DOI QR코드

DOI QR Code

Discrete-Time Output Feedback Control of Nonlinear Systems with Unknown Time-Delay : Fuzzy Logic Approach

미지의 시간지연을 갖는 비선형 시스템의 이산시간 퍼지 출력 궤환 제어

  • 신현석 (연세대학교 전기전자공학과) ;
  • 김은태 (연세대학교 전기전자공학과) ;
  • 박민용 (연세대학교 전기전자공학과)
  • Published : 2003.05.01

Abstract

A new discrete-time fuzzy output feedback control method for nonlinear systems with unknown time-delay is proposed. Ma et al. proposed an analysis and design method of fuzzy controller and observer and Cao et al. extend this result to be applicable fir the nonlinear systems with known time-delay. For the case of unknown time-delay, we derive the sufficient condition f3r the asymptotic stability of the equilibrium Point by applying Lyapunov-Krasovskii theorem and convert this condition into the LMI problem.

Keywords

References

  1. Y. Y. Cao and P. M. Frank, 'Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach,' IEEE Trans. Fuzzy Syst., vol. 8, no. 2, pp. 200-211, 2000 https://doi.org/10.1109/91.842153
  2. K. R. Lee, J. H. Kim, E. T. Jeung and H. B. Park, 'Output feedback robust $H^{\infty}$ control of uncertain fuzzy dynamic systmes with time-varying delay https://doi.org/10.1109/91.890325
  3. Z. Yi and P. A. Heng, 'Stability of fuzzy control systems with bounded uncertain delays,' IEEE Trans. Fuzzy Syst., vol.10, no. 1, pp. 92-92, 2002 https://doi.org/10.1109/91.983283
  4. D. Iv nescu, J.-M. Dion, L. Dugard and S. I. Niculescu, 'Delay effects and dynamical compensation for time-delay systems,' Proc. Of the 38th Conf. on Decision & Control, pp. 1999-2004, 1999 https://doi.org/10.1109/CDC.1999.830932
  5. V. B. Komanovskii, S. I. Niculescu and K. Gu, 'Delay effects on stability a survey,' Proc. of the 38th Conf. on Decision & Control, pp. 1993-1998, 1999 https://doi.org/10.1109/CDC.1999.830931
  6. P. A. Bliman, 'Lyapunov equation for the stability of linear delay systems of retarded and neutral type,' IEEE Trans. Automat. Contr., vol. 47, no. 2, pp. 327-335, 2002 https://doi.org/10.1109/9.983374
  7. K. Tanaka and M. Sugeno, 'Stability analysis and design of fuzzy control systems,' Fuzz Sets and Syst., vol. 45, no. 2, pp. 135-156, 1992 https://doi.org/10.1016/0165-0114(92)90113-I
  8. X. -J. Ma, Z. -Q. Sun, and Y. Y. He, 'Analysis and design of fuzzy controller and fuzzy observer,' IEEE Trans. Fuzzy Syst., vol. 6, no. 1, pp. 41-51, 1998 https://doi.org/10.1109/91.660807
  9. T.-J. Su, C.-Y. Lu and J. S.-H. Tsai, 'LMi approach to delay-dependent robust stability for uncertain time-delay systems,' IEE Proc. Control Theory Appl., vol. 148, no. 3, pp. 209-212, 2001 https://doi.org/10.1049/ip-cta:20010413
  10. N. N. Krasovskii, Stability of Motion, CA: Standford Univ. Press, Stanford, 1963
  11. J. K. Hale, Theory of Functional Differential Equations, Applied Mathematical Sciences 3, Springer-Verlag, New York, 1977
  12. T. Takagi and M. Sugeno, 'Fuzzy identifications of systems and its applications to modeling and control,' IEEE Trans. Syst., Man. Cybern., vol. 15, pp. 116-132, 1985
  13. S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities in systems and control theory, PA: SIAM, Philadelphia, 1994
  14. C. S. Tseng, B. S. Chen, and H. J. Uang, 'Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model,' IEEE Trans. Fuzzy Syst., vol. 9, no. 3, pp. 381-392, 2001 https://doi.org/10.1109/91.928735