참고문헌
- Nature v.344 Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA Robertson,D.L.;G.F.Joyce https://doi.org/10.1038/344467a0
- Nature v.346 In vitro selection of RNA molecules that bind specific ligands Ellington,A.D.;J.W.Szostak https://doi.org/10.1038/346818a0
- Science v.249 Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase Tuerk,C.;L.Gold https://doi.org/10.1126/science.2200121
- Clin. Chem. v.45 Aptamers: An emerging class of molecules that rival antibodies in diagnostics Jayasena,S.
- Nucleic Acids Res. v.24 RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity Geiger,A.;P.Burgstaller;H.von der Eltz;A.Roeder;M.Famulok https://doi.org/10.1093/nar/24.6.1029
- Proc. Natl. Acad. Sci. USA v.94 In vitro selection of a 7-methyl-guanosine binding RNA that inhibits translation of capped mRNA molecules Haller,A.A.;P.Sarnow https://doi.org/10.1073/pnas.94.16.8521
-
J. Inorg. Biochem.
v.82
In vitro selection of aptamers that act with
$Zn^{2+}$ Kawakami,J.;H.Imanaka;Y.Yokota;N.Sugimoto - Biochemistry v.39 RNA aptamers to S-adenosylhomocysteine: kinetic properties, divalent cation dependency, and comparison with anti-S-adenosylhomocysteine antibody Gebhardt,K.;A.Shokraei;G.Babane;B.H.Lindquist https://doi.org/10.1021/bi000295t
- Proc. Natl. Acad. Sci. USA v.98 The use of mRNA display to select high-affinity proteinbinding peptides Wilson,D.S.;A.D.Keefe;J.W.Szostak https://doi.org/10.1073/pnas.061028198
- Nature Biotechnol. v.14 An enzyme-linked oligonucleotide assay Drolet,D.W.;L.Moon-McDermott;T.S.Romig https://doi.org/10.1038/nbt0896-1021
- Nuclic Acids Res. v.24 Use of a high affinity DNA ligand in flow cytometry Davis,K.A.;B.Abrams;Y.Lin;S.D.Jayasena https://doi.org/10.1093/nar/24.4.702
- Nucleic Acids Res. v.26 Staining of cell surface human CD4 with 2'-F-pyrimidine-containing RNA aptamers for flow cytometry Davis,K.A.;Y.Lin;B.Abrams;S.D.Jayasena https://doi.org/10.1093/nar/26.17.3915
- Anal. Chem. v.70 Adapting selected nucleic acid ligands(aptamers) to biosensors Radislav,R.A.;R.C.Conrad;A.D.Ellington;G.M.Hieftje https://doi.org/10.1021/ac9802325
- PrP. J. Virol. v.71 RNA aptamers specifically interact with the prion protein Weiss,S.;D.Proske;M.Neumann;M.H.Groschup;H.A.Kretzschmar;M.Famulok;E.L.Winnacker
- RNA v.5 In vitro selection of RNA aptamers that bind special elongation factor SelB, a protein with multiple RNA-binding sites, reveals one major interaction domain at the carboxyl terminus Klug,S.J.;A.Huttenhofer;M.Famulok https://doi.org/10.1017/S135583829999088X
- Clin. Invest. v.98 DNA aptamers block L-selectin function in vivo. Inhibition of human lymphocyte trafficking in SCID mice Hicke,B.J.;S.R.Watson;A.Koenig;C.K.Lynott;R.F.Bargatze;Y.F.Chang;S.Ringquist;L.Moon-McDermott;S.Jennings;T.Fitzwater;H.L.Han;N.Varki;I.Albinana;M.C.Willis;A.Varki;D.Parma https://doi.org/10.1172/JCI119092
- J. Biol. Chem. v.273 RNA molecules that bind to and inhibit the active site of a tyrosine phosphatase Bell,S.D.;J.M.Denu;J.E.Dixon;A.D.Ellington https://doi.org/10.1074/jbc.273.23.14309
- Biochemistry v.40 SELEX selection of high-affinity oligonucleotides for bacteriophage Ff gene 5 protein Wen,J.D.;C.W.Gray;D.M.Gray https://doi.org/10.1021/bi010109z
- Nucleic Acids Res. v.22 The application of a modified nucleotide in aptamer selection: novel thrombin aptamers containing 5-(1-pentynyl)-2'-deoxyuridine Latham,J.A.;R.Johnson;J.J.Toole https://doi.org/10.1093/nar/22.14.2817
- Biochemistry v.36 In vitro selection of dopamine RNA ligands Mannironi,C.;A. Di Nardo;P.Fruscoloni;G.P.Tocchini-Valentini https://doi.org/10.1021/bi9700633
- J. Virol. v.73 Anti-Rex aptamers as mimics of the Rex-binding element Baskerville,S.;M.Zapp;A.D.Ellington
-
J. Immunol.
v.160
Cutting edge: novel RNA ligands able to bind CD4 antigen and inhibit
$CD4^+$ T lymphocyte function Kraus,E.;W.James;A.N.Barclay - FEBS Lett. v.441 RNA aptamers that specifically bind to the Ras-binding domain of Raf-1 Kimoto,M.;K.Sakamoto;M.Shirouzu;I.Hirao;S.Yokoyama https://doi.org/10.1016/S0014-5793(98)01572-5
- Nucleic Acids Res. v.24 RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity Geiger,A.;P.Burgstaller;H.von der Eltz;A.Roeder;M.Famulok https://doi.org/10.1093/nar/24.6.1029
- EMBO J. v.14 Identification of two novel arginine binding DNAs Harada,K.;A.D.Frankel
- Nat. Struct. Biol. v.1 An RNA pocket for an aliphatic hydrophobe Majerfeld,I.;M.Yarus https://doi.org/10.1038/nsb0594-287
- J. Am. Chem. Soc. v.14 Stereospecific recognition of tryptophan agarose by in vitro selected RNA Famulok,M.;J.W.Szostak
- EMBO J. v.18 tRNA prefers to kiss Scarabino,D.;A.Crisari;S.Lorenzini;K.Williams;G.P.Tocchini-Valentini https://doi.org/10.1093/emboj/18.16.4571
- RNA v.5 In vitro selection identifies key determinants for loop-loop interactions: RNA aptamers selective for the TAR RNA element of HIV-1 Duconge,F.;J.J.Toulme https://doi.org/10.1017/S1355838299991318
- Biotechnol. Prog. v.14 Automated RNA selection Cox,J.C.;P.Rudolph;A.D.Ellington https://doi.org/10.1021/bp980097h
- Science v.282 Controlling gene expression in living cells through small molecule-RNA interactions Werstuck,G.;M.R.Green https://doi.org/10.1126/science.282.5387.296
- J. Biol. Chem. v.273 Cleavage of highly structured viral RNA molecules by combinatorial libraries of hairpin ribozymes. The most effective ribozymes are not predicted by substrate selection rules Yu,Q.;D.B.Pecchia;S.L.Kingsley;J.E.Heckman;J.M.Burke https://doi.org/10.1074/jbc.273.36.23524
- Structure Fold Des. v.7 Saccharide-RNA recognition in a complex formed between neomycin B and an RNA aptamer Jiang,L.;A.Majumdar;W.Hu;T.J.Jaishree;W.Xu;D.J.Patel https://doi.org/10.1016/S0969-2126(99)80105-1
- RNA v.5 StreptoTag: a novel method for the isolation of RNA-binding proteins Bachler,M.;R.Schroeder;U.von Ahsen https://doi.org/10.1017/S1355838299991574
- Nat. Struct. Biol. v.5 Solution structure of the tobramycin-RNA aptamer complex Jiang,L.;D.J.Patel https://doi.org/10.1038/1804
- Bioorg. Med. Chem. v.9 A tetracycline-binding RNA aptamer Berens,C.;A.Thain;R.Schroeder https://doi.org/10.1016/S0968-0896(01)00063-3
- Chem. Biol. v.2 In vitro selection of RNA lectins: using combinatorial chemistry to interpret ribozyme evolution Lato,S.M.;A.R.Boles;A.D.Ellington https://doi.org/10.1016/1074-5521(95)90048-9
- Biochemistry v.33 In vitro selection of RNA aptamers specific for cyanocobalamin Lorsch,J.R.;J.W.Szostak https://doi.org/10.1021/bi00170a016
- Biochemistry v.37 Functional requirements for specific ligand recognition by a biotinbinding RNA pseudoknot Wilson,C.;J.Nix;J.W.Szostak https://doi.org/10.1021/bi981371j
- Nature v.371 in vitro evolution of new ribozymes with polynucleotide kinase activity Lorsch,J.R.;J.W.Szostak https://doi.org/10.1038/371031a0
- Nucleic Acids Res. v.26 Allosteric regulation of a ribozyme activity through ligand-induced conformational change Araki,M.;Y.Okuno;Y.Hara;Y.Sugiura https://doi.org/10.1093/nar/26.14.3379
- Biochemistry v.37 A semiconserved residue inhibits complex formation by stabilizing interactions in the free state of a theophylline-binding RNA Zimmermann,G.R.;T.P.Shields;R.D.Jenison;C.L.Wick;A.Pardi https://doi.org/10.1021/bi980082s
- Nature v.355 Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures Ellington,A.D.;J.W.Szostak https://doi.org/10.1038/355850a0
- J. Mol. Biol. v.301 2.8 A crystal structure of the malachite green aptamer Baugh,C.;D.Grate;C.Wilson https://doi.org/10.1006/jmbi.2000.3951
- J. Mol. Biol. v.269 Characterization and divalent metal-ion dependence of in vitro selected deoxyribozymes which cleave DNA/RNA chimeric oligonucleotides Faulhammer,D.;M.Famulok https://doi.org/10.1006/jmbi.1997.1036
- J. Chromatogr. B: Biomed. Sci. Appl. v.731 Aptamer affinity chromatography: combinatorial chemistry applied to protein purification Romig,T.S.;C.Bell;D.W.Drolet https://doi.org/10.1016/S0378-4347(99)00243-1
- J. Immunol. v.157 High-affinity oligonucleotide ligands to human IgE inhibit binding to Fce receptor I Wiegand,T.W.;P.B.Williams;S.C.Dreskin;M.H.Jouvin;J.P.Kinet;D.Tasset
- Proc. Natl. Acad. Sci. USA v.96 Design of highly specific cytotoxins by using transsplicing ribozymes Ayre,B.G.;U.Kohler;H.M.Goodman;J.Haseloff https://doi.org/10.1073/pnas.96.7.3507
- Mol. Ther. v.2 Enhancing RNA repair efficiency by combining trans-splicing ribozymes that recognize different accesible sites on a target RNA Lan,N.;B.L.Rooney;S.W.Lee;R.P.Howrey;C.A.Smith;B.A.Sullenger https://doi.org/10.1006/mthe.2000.0125
- Electrophoresis v.23 Aptamers as analytical reagents Clark,S.L.;V.T.Remcho https://doi.org/10.1002/1522-2683(200205)23:9<1335::AID-ELPS1335>3.0.CO;2-E
- Curr. Opin. Chem. Biol. v.1 Structure analysis of nucleic acid aptamers Patel,D.J. https://doi.org/10.1016/S1367-5931(97)80106-8
-
Nat. Struct. Biol.
v.7
The structural basis for molecular recognition by the vitamin
$B^ {12}$ RNA aptamer Sussman,D.;J.C.Nix;C.Wilson https://doi.org/10.1038/71253 - Nat. Biotechnol. v.20 Nucleic acid evolution and minimization by nonhomologous random recombination Bittker,J.A.;B.V.Le;D.R.Liu https://doi.org/10.1038/nbt736
- PCR Methods Appl. v.3 Mutagenic PCR Cadwell,R.C.;G.F.Joyce https://doi.org/10.1101/gr.3.6.S136
- Nature v.370 Rapid evolution of a protein in vitro by DNA shuffling Stemmer,W.P. https://doi.org/10.1038/370389a0
- Curr. Opin. Chem. Biol. v.1 Aptamers as therapeutic and diagnostic reagents: problems and prospects Osborne,S.E.;I.Matsumura;A.D.Ellington https://doi.org/10.1016/S1367-5931(97)80102-0
- J. Immunol. v.159 Isolation and characterization of 2'-fluoro-, 2'-amino-, and 2'-fluoro-/amino-modified RNA ligands to human IFN-gamma that inhibit receptor binding Kubik,M.F.;C.Bell;T.Fitzwater;S.R.Watson;D.M.Tasset
- Encyclopedia of analytical chemistry Aptamers James,W.;R.A.Meyers(Ed.)
- J. Biol.Chem. v.275 In vitro selection of RNA molecules that inhibit the activity of ricin A-chain Hesselberth,J.R.;D.Miller;J.Robertus;A.D.Ellington https://doi.org/10.1074/jbc.275.7.4937
- J. Biol. Chem. v.275 HIV-1 reverse transcriptase-pseudoknot RNA aptamer interaction has a binding affinity in the low picomolar range coupled with high specificity Kensch,O.;B.A.Connolly;H.J.Steinhoff;A.McGregor;R.S.Goody;T.Restle https://doi.org/10.1074/jbc.M001309200
- Biochem. Biophys. Res. Commun. v.279 The RNA aptamer-binding site of hepatitis C virus NS3 protease Hwang,J.;H.Fauzi;K.Fukuda;S.Sekiya;N.Kakiuchi;K.Shimotohno;K.Taira;I.Kursakabe;S.Nishikawa https://doi.org/10.1006/bbrc.2000.4007
- RNA v.6 In vitro selection of novel RNA ligands that bind human cytomegalovirus and block viral infection Wang,J.;H.Jiang;F.Liu https://doi.org/10.1017/S1355838200992215
- Biochem. Biophys. Res. Commun. v.281 In vitro selection of the RNA aptamer against the Sialyl Lewis X and its inhibition of the cell adhesion Jeong,S.;T.Eom;S.Kim;S.Lee;J.Yu https://doi.org/10.1006/bbrc.2001.4327
- Curr. Opin. Pharmacol. v.1 Nucleic acid and polypeptide aptamers: A powerful approach to ligand discovery James,W. https://doi.org/10.1016/S1471-4892(01)00093-5
- J. Clin. Invest. v.106 Developing aptamers into therapeutics White,R.R.;B.A.Sullenger;C.P.Rusconi https://doi.org/10.1172/JCI11325
- J. Biol. Chem. v.270 Chemical modification of hammerhead ribozymes: Catalytic activity and nuclease resistance Beigelman,L.;J.A.Mcswiggen;K.G.Draper;C.Gonzalez;K.Jensen;A.M.Karpeisky;A.S.Modak;J.Matulicadamic;A.B.Direnzo;P.Haeberli;D.Sweedler;D.Tracz;S.Grimm;F.E.Wincott;V.G.Thackray;N.Usman https://doi.org/10.1074/jbc.270.43.25702
- Biochemistry v.34 Potent 2'-amino-2'-deoxypyrimidine RNA inhibitors of basic fibroblast growth factor Jellinek,D.;L.S.Green;C.Bell;C.K.Lynott;N.Gill;C.Vargeese;G.Kirschnheuter;D.P.C.Mcgee;P.Abesinghe;W.A.Pieken;R.Shapiro;D.B.Rifken;D.Moscatelli;N.Janjic https://doi.org/10.1021/bi00036a009
- M. J. Biol. Chem. v.5 The generation and characterization of antagonist RNA aptamers to human oncostatin Rhodes,A.;A.Deakin;J.Spaull;B.Coomber;A.Aitken;P.Life;S.Rees
- J. Chromatogr. B: Biomed. Sci. Appl. v.732 Detection and plasma pharmacokinetics of an anti-vascular endothelial growth factor oligonucleotide-aptamer (NX1838) in rhesus monkeys Tucker,C.E.;L.S.Chen;M.B.Judkins;J.A.Farmer;S.C.Gill;D.W.Drolet https://doi.org/10.1016/S0378-4347(99)00285-6
- Am. J. Pathol. v.154 Novel approach to specific growth factor inhibition in vivo: antagonism of platelet-derived growth factor in glomerulonephritis by aptamers Floege,J.;T.Ostendorf;U.Janssen;M.Burg;H.H.Radeke;C.Vargeese;S.C.Gill;L.S.Green;N.Janjin https://doi.org/10.1016/S0002-9440(10)65263-7
- Bioconjug. Chem. v.9 Liposome-anchored vascular endothelial growth factor aptamers Willis,M.C.;B.D.Collins;T.Zhang;L.H.Green;D.P.Sebesta;C.Bell;E.Kellogg;S.C.Gill;A.Magallanez;S.Knauer;R.A.Bendele;P.S.Gill;N.Janjic;B.Collins https://doi.org/10.1021/bc980002x
- Nature v.355 Selection of single-stranded DNA molecules that bind and inhibit human thrombin Bock,L.C.;L.C.Griffin;J.A.Latham;E.H.Vermaas;J.J.Toole https://doi.org/10.1038/355564a0
- Blood v.83 novel nucleotide-based thrombin inhibitor inhibits clot-bound thrombin and reduces arterial platelet thrombus formation Li,W.X.;A.V.Kaplan;G.W.Grant;J.J.Toole;L.L.A.Leung
- Thromb. Haemostasis v.84 Blocking the initiation of coagulation by RNA aptamers to factor VIIa Rusconi,C.P.;A.Yeh;H.K.Lyerly;J.H.Lawson;B.A.Sullenger https://doi.org/10.1055/s-0037-1614126
- Nature v.362 Inhibition of vascular endothelial growth factor induced angiogenesis suppresses tumour growth in vivo Kim,K.J.;B.Li;J.Winer;M.Armanini;N.Gillett;H.S.Phillips;N.Ferrara https://doi.org/10.1038/362841a0
- J. Biol. Chem. v.273 2'- Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced ascular permeability through interactions requiring the exon 7-encoded domain Ruckman,J.;L.S.Green;J.Beeson;S.Waugh;W.L.Gillette;D.D.Henninger;L.Claesson-Welsh;N.Janjic https://doi.org/10.1074/jbc.273.32.20556
- Pharm. Res. v.17 Pharmacokinetics and safety of an anti-vascular endothelial growth factor aptamer(NX1838) following injection into the vitreous humor of rhesus monkeys Drolet,D.W.;J.Nelson;C.E.Tucker;P.M.Zack;K.Nixon;R.Bolin;M.B.Judkins;J.A.Farmer;J.L.Wolf;S.C.Gill
- Science v.263 High-resolution molecular discrimination by RNA Jenison,R.D.;S.C.Gill;A.Pardi;B.Polisky https://doi.org/10.1126/science.7510417
- Nat. Prod. Rep. v.16 Oligomeric and biogenetic combinatorial libraries Lowe,G. https://doi.org/10.1039/a809411j
- Methods Enzymol. v.267 SELEX primer Fitzwater,T.;B.A.Polisky https://doi.org/10.1016/S0076-6879(96)67019-0
- Nucleic Acids Res. v.25 Synthesis and radioiodination of a stannyl oligodeoxyribonucleotide Dougan,H.;J.B.Hobbs;J.I.Weitz;D.M.Lyster https://doi.org/10.1093/nar/25.14.2897
- Nucleic Acids Res. v.24 Simple method for 30-labeling of RNA Huang,Z.;J.A.Szostak https://doi.org/10.1093/nar/24.21.4360
- Anal. Biochem. v.224 Nonradioactive 3'-end labeling of RNA molecules of different lengths by terminal deoxynucleotidyl transferase Rosemeyer,V.;A.Laubrock;R.Seibl https://doi.org/10.1006/abio.1995.1068
- Nucleic Acids Res. v.26 Staining of cell surface human CD4 with 2'-F-pyrimidine containing RNA aptamers for flow cytometry Davis,K.A.;Y.Lin;B.Abrams;S.D.Jayasena https://doi.org/10.1093/nar/26.17.3915
- Nat. Biotechnol. v.14 An enzyme-linked oligonucleotide assay Drolet,D.W.;L.Moon-McDermott;T.S.Romig https://doi.org/10.1038/nbt0896-1021
- Nucleic Acids Res. v.25 In vitro selection of RNAs that bind to the human immunodeficiency virus type-1 gag polyprotein Lochrie,M.A.;S.Waugh;D.G.Pratt;J.Jr.Clever;T.G.Parslow;B.Polisky,B. https://doi.org/10.1093/nar/25.14.2902
- J. Mol. Biol. v.272 Oligonucleotide inhibitors of human thrombin that bind distinct epitopes Tasset,D.M.;M.F.Kubik;W.Steiner https://doi.org/10.1006/jmbi.1997.1275
- Anal. Bioanal. Chem. v.372 Aptasensors-The fure of biosensing O'Sullivan,C.K. https://doi.org/10.1007/s00216-001-1189-3
- Cytometry v.33 Anti-L-selectin oligonucleotide ligands recognize CD62L-positive leukocytes: binding affinity and specificity of univalent and bivalent ligands Ringquist,S.;D.Parma https://doi.org/10.1002/(SICI)1097-0320(19981201)33:4<394::AID-CYTO2>3.0.CO;2-0
- Proc. Natl. Acad. Sci. USA v.92 Peptide conjugation to an in vitro-selected DNA ligand improves enzyme inhibition Lin,Y.;A.Padmapriya;K.M.Morden;S.D.Jayasena https://doi.org/10.1073/pnas.92.24.11044
- Anal. Chem. v.70 High-affinity RNA as a recognition element in a biosensor Kleinjung,F.;S.Klussman;V.A.Erdmann;F.W.Scheller;J.P.Furste;F.F.Bier https://doi.org/10.1021/ac9706483
- Anal. Chem. v.70 Adapting selected nucleic acid ligands(aptamers) to biosensors Potyrailo,R.A.;R.C.Conrad;A.D.Ellington;G.M.Hieftje https://doi.org/10.1021/ac9802325
- Anal. Biochem. v.282 A fiber-optic microarray biosensor using aptamers as receptors Lee,M.;D.R.Walt https://doi.org/10.1006/abio.2000.4595
- Genes Cells v.5 Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV-1 Yamamoto,R.;P.K.R.Kumar https://doi.org/10.1046/j.1365-2443.2000.00331.x
- Anal. Chem. v.70 Aptamers as ligands in affinity probe capillary electrophoresis German,I.;D.D.Buchanan;R.T.Kennedy https://doi.org/10.1021/ac980638h
- Anal. Chem. v.72 Separation of nontarget compounds by DNA aptamers Kotia,R.B.;L.Li;L.B.McGown https://doi.org/10.1021/ac991112f
- Electrophoresis v.22 Open-tubular capillary electrochromatography of bovine beta-lactoglobulin variants A and B using an aptamer stationary phase Rehder,M.A.;L.B.McGown https://doi.org/10.1002/1522-2683(200109)22:17<3759::AID-ELPS3759>3.0.CO;2-C
- Anal. Chem. v.69 High density, covalent attachment of DNA to silicon wafers for analysis by MALDI-TOF mass spectrometry O'Donnell,M.J.;K.Tang;H.Koster;C.L.Smith;C.R.Cantor https://doi.org/10.1021/ac961007v
- Anal. Chem. v.73 Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase Deng,Q.;I.German;D.Buchanan;R.T.Kennedy https://doi.org/10.1021/ac0105437
- Nature v.364 An RNA motif that binds ATP Sassanfar,M.;J.W.Szostak https://doi.org/10.1038/364550a0
- Biochemistry v.34 A DNA aptamer that binds adenosine and ATP Huizenga,D.E.;J.W.Szostak https://doi.org/10.1021/bi00002a033
- Nat. Biotechnol. v.17 Proteomics: translating genomics into products Dove,A. https://doi.org/10.1038/6972
- J. Biotechnol. v.81 Diagnostic potential of PhotoSELEX-evolved ssDNA aptamers Golden,M.C.;B.D.Collins;M.C.Willis;T.H.Koch https://doi.org/10.1016/S0168-1656(00)00290-X