Protein Binding of [S]-Perillyl Alcohol in HSA using High-Performance Frontal Analysis

HPFA를 이용한 HSA와 [S]-Perillyl Acohol의 단백질 결합력

  • 송명석 (인하대학교 공과대학 화학공학과) ;
  • 왕덕선 (인하대학교 공과대학 화학공학과) ;
  • 구윤모 (초정밀분리연구센터) ;
  • 노경호 (인하대학교 공과대학 화학공학과)
  • Published : 2003.04.01

Abstract

An on-line frontal analysis HPLC system was developed to determine the unbound concentration of (S)-perillyl alcohol, an potential anti-cancer agent, in human serum albumin (HSA) solution, The analysis was performed on a Develosil 100 Diol 5 (10 cm x 4.6 mm I.D.) high-performance frontal analysis (HPFA) column. Sodium phosphate solution was used as the mobile phase (pH 7.4, ionic strength 0.17) at a flow rate of 1 $m\ell$/min. UV wavelength was set at 205 nm. A injection volume of 600${mu}ell$ was chosen to ensure the compound eluted formed a zonal peak with a plateau. By Scatchard analysis, it was found that the binding constant(K) and binding number(n) of (S)-perillyl alcohol to molecular HSA were 2.05 x $10^6$ [$M{-1}$], 0.00428, respectively.

의학, 약학적으로 작용이 뛰어난 약리성분이 인체 내에서 상처 부위에 얼마나 빨리 도달하여 치료를 하는지를 알기 위하여 혈장 단백질과 약리성분의 결합력을 연구하는 새로운 연구 분야가 HPFA이다. 본 연구는 인체 내에 존재하는 혈장단백질과 항암제로서 알려져 있는 (S)-perillyl alcohol의 결합력과 결합 매개변수를 구하기 위하여 on-line frontal analysis HPLC system을 적용하였다. Develosil 100 Diol 5 (10 cm $\times$ 4.6 mm I.D.)의 HPFA 컬럼을 이용하였고, 이동상은 인산완충용액(pH = 7.4, I = 0.17)을 이용하였다. UV wavelength 205 nm에서 실험을 수행하였고, 주입 부피는 본 실험 조건인 혈장 단백질이 350 rM일 경우에 최대의 혈장 단백질과 결합되지 않은 약리성분의 농도를 갖게 되는 600 ${\mu}\ell$으로 정하였다. Scatchard analysis를 통한 연구 결과로 혈장 단백질인 HSA와 (S)-perillyl alcohol의 결합 매개변수(K)와 단위 HSA에 대한 S-POH의 결합 위치의 수(n)는 각각 K : 2.05 $\times$ $10^{6}$ [M$^{-1}$], n : 0.00428로 실험적으로 구하였다

Keywords

References

  1. J. Chromatogr. A. v.952 Chmiluminescence detection coupled to high-performance frontal analysis for the determination of unbound concentrations of drugs in protein binding equilibrium Qiao, M.;X. Guo;F. Li https://doi.org/10.1016/S0021-9673(02)00086-9
  2. J. Chromatogr. B. v.768 Plasma protein binding study of oxybutynin by high-performance frontal analysis Shibukawa, A.;N. Ishizawa;T. Kimura;Y. Sakamoto;K. Ogita;Y. Matsuo;Y. Kuroda;C. Matayatsuk;T. Nakagawa;I.W. Wainer https://doi.org/10.1016/S0378-4347(01)00497-2
  3. J. Chromatogr. B. v.768 Binding study of desethyloxybutynin using high-performance frontal analysis and the application to the study of drug-plasma protein binding Shibukawa, A.;Y. Kuroda;T. Nakagawa https://doi.org/10.1016/S0378-4347(01)00499-6
  4. Trends Anal. Chem. v.18 no.8 Development of high-performance frontal analysis and the application to the study of drug-plasma protein binding Shibukawa, A.;Y. Kuroda;T. Nakagawa https://doi.org/10.1016/S0165-9936(99)00136-3
  5. J. Chromatogr. A. v.697 High-performance frontal analysis for the study of protein binding of troglitazone (CS-045) in albumin solution and in human plasma Shibukawa, A.;T. Sawada;C. Nakao;T. Izumi;T. Nakagawa https://doi.org/10.1016/0021-9673(94)00929-4
  6. J. Pharm. Biomed. Anal. v.18 High-performan frontal analysis for drug-protein binding study Shibukawa, A.;Y. Kuroda;T. Nakagawa https://doi.org/10.1016/S0731-7085(98)00201-5
  7. J. Biol. Chem. v.266 Selective inhibition of isoprenylation of 21-26-kDa proteins by the anticarcimogen d-Limonene and its metabolites Crowell, P. L.;R. R. Chang;Z. Ren;C. E. Elson;M. N. Gould
  8. Carcinogenesis v.13 Chemoprevention of mammary carcinogenesis by hydroxylated derivatives of d-limonene Crowell, P. L.;W. S. Kennan;J. D. Haag;S. Ahmad;S. Vedejs;M. N. Could https://doi.org/10.1093/carcin/13.7.1261
  9. Biochem. Pharm. v.47 Structure-activity relationships among monoterpene inhibitors of protein isoprenylation and cell proliferation Crowell P. L.;Z. Ren;S. Lin;E. Vedejs;M.N. Gould https://doi.org/10.1016/0006-2952(94)90341-7
  10. Cancer Res. v.58 Inhibitory effects of perillyl alcohol on UVB induced murine skin cancer and AP-1 transactivation Barthelman, M.;W. Chen;H. L. Genster;C. Huang;Z. Dong;G. T. Bowden
  11. European J. Cancer v.36 The state-of-the-art in chemoprevention of skin cancer Stratton, S. P.;R. T. Dorr;D. S. Alberts https://doi.org/10.1016/S0959-8049(00)00108-8
  12. J. Cell Biochem. v.27 Chemopreventive effect of perillyl alcohol on 4-(methylnitrosamino)-1-(3-pyridyl)-1- butanone induced tumorigenesis in (C3H/HeJ X A/J) F1 mouse lung Lantry, L. E.;Z. Zhang;F. Gao;K. A. Crist;Y. Wang;G. J. Kelloff;R. A. Lubet;M. You
  13. Cancer Res. v.55 Induction of apoptosis in liver tumors by the monoterpene perillyl alcohol Mills, J. J.;R. S., Chari;I. J. Boyer;M. N. Gould;R. L. Jirtle
  14. Cancer Lett. v.96 Chemotherapy of pancreatic cancer with the monoterpene perillyl alcohol Stark, M. J.;Y. D. Burke;J. H. McKinzie;A. S. Ayoubi;P.L. Crowell https://doi.org/10.1016/0304-3835(95)03912-G
  15. J. Chrom. A v.544 High-performance liquid chromatography packing materials for the analysis of small molecules in biological matrices by direct injection Pinkerton, T. C. https://doi.org/10.1016/S0021-9673(01)83975-3
  16. Anal. Biochem. v.274 Binding study of semotiadil and levosemotiadil with α-acid glycoprotein using high- performance frontal analysis Rosas, M. E. R.;A. Shibukawa;Y. Yoshikawa;Y. Kuroda;T. Nakagawa https://doi.org/10.1006/abio.1999.4266
  17. Anal. Chem. v.65 High-Performance Liquid Chromatography(Direct Injection Techniques) Anderson, D.J.
  18. J. Pharm. Biomed. Anal. v.15 Enantioselective protein binding of semotiadil and levosemotiadil determined by high-performance frontal analysis Rosas, M. E. R.;A. Shibukawa;K. Ueda;T. Nakagawa https://doi.org/10.1016/S0731-7085(96)02053-5