Mineralogy of Evaporation Residues and Geochemistry of Acid Mine Drainage in the Donghae Mine Area

동해탄광 일대 산성광산배수의 지화학적 특성 및 증발잔류물에 대한 광물학적 연구

  • 김정진 (서울대학교 지구환경과학부) ;
  • 김수진 (서울대학교 지구환경과학부) ;
  • 김윤영 (중앙대학교 산업경영연구소)
  • Published : 2003.04.01

Abstract

The mineralogy of material left after evaporation of acid mine drainage water is generally dependent on the chemical composition of the source water. The residues formed by the evaporation of acid mine water in the Dong-hae coal mine area consists mainly of gypsum (CaSO$_4${\circ}$2$H_2O$) with mine. amounts of alunogen (Al$_2$(SO$_4$)$_3$${\circ}$17$H_2O$) and hexahydrite (MgSO$_4$${\circ}$<.TEX>6$H_2O$). Gypsum was identified from both of the bottom precipitates and the evaporation residues of acid mine water. Alunogen, an aluminum sulfate hydrate, was also formed by evaporation and occurred as needle-like crystals. Aluminum is derived from chemical dissolution of alumine-silicate mineral such as pyre-phyllite, illite and chlorite in wasted rocks. Hexahydrite in evaporation residues occured as needle-like, fibrous, and acicular crystals and was associated with gypsum and alunogen.

동해탄광 지역의 산성광산배수에는 Ca, SO$_4$, Mg, Al의 함량이 높게 나타난다. 이 일대의 산성광산배수를 증발시켰을 때 생성된 증발잔류물에서는 주로 석고(CaSO$_4$${\cdot}$2$H_2O$)가 생성되었으며 그 외에 소량의 알루노겐(Al$_2$(SO$_4$)$_4$${\circ}$17$H_2O$) 과 헥사하이드라이트(MgSO$_4$${\circ}$6$H_2O$)가 형성되었다. 석고를 형성하는 Ca는 주변의 모암속에 포함된 방해석에서, SO$_4$ 는 폐석에 포함된 황철석에서 기원한 것으로 생각된다. 함수 알루미늄황산염광물인 알루노겐은 침상의 결정으로 나타난다. 하천수의 Al은 모암이나 폐석에 포함된 엽납석, 일라이트, 녹니석과 같은 층상규산염광물의 화학적 용해작용에 의해 부과된 것으로 추정된다. 함수 마그네슘황산염광물인 헥사하이드라이트는 침상이나 섬유상의 결정으로 생성되었으며 Mg의 기원은 모암내의 돌로마이트와 광산폐셔의 주 구성광물인 녹니석으로 판단된다.

Keywords

References

  1. 자원환경지질 v.35 태백 동해광산일대의 물-광물의 반응에 의한 산성광산배수의 지구화학적 특성변화 김정진;김수진
  2. 자원환경지질 v.29 광산배수 수용하천의 중금속이온 평형에 관한 연구 김진범;전상호;김휘중
  3. 자원환경지질 v.33 화순 폐탄광지역 광산배수와 침전 및 증발잔류광물에 대한 지구화학적 및 광물학적 연구 박천영;정연중;강지성
  4. 자원환경지질 v.28 동해탄광 주변 산성광산폐수와 하상퇴적물의 지구화학 오대균;김정엽;전효택
  5. 대한지질학회 및 대한자원환경지질학회 제11회 공동학술경연회발표논문집 광산 배수의 산성화 및 그에 따른 환경문제 유재영
  6. 지하수환경학회지 v.5 강원도 강릉시 강동면에 분포하는 폐탄광으로부터의 배수에 의한 임곡천 및 동해의 오염 허봉;유재영
  7. Environmental Geochemistry of Sulfide Mine-Wastes. Mineralogical Association of Canada, Short Course Handbook no.22 Mineralogy of ochre deposits formed by sulfide oxidation Bigham, J.M;Jambor, J.L(ed);Blowes, D.W(ed)
  8. Appl. Geochem v.10 Geochemistry of iron ochres and mine waters from Levant Mine, Cornwall Bowell, R.J;Bruce, I https://doi.org/10.1016/0883-2927(94)00036-6
  9. Geochim. Cosmochim. Acta v.47 Processes controlling metal ion attenuation in acid mine drainage streams Chapman, B.M;Jones, D.R;Jung, R.F https://doi.org/10.1016/0016-7037(83)90213-2
  10. Resource Geol v.49 Hydrogeochemical characteristics of acid mine drainage around the abandoned Youngdong coal mine in Korea Chon, H.T;Kim, J.Y;Choi, S.Y https://doi.org/10.1111/j.1751-3928.1999.tb00037.x
  11. Chem. Geol v.74 Iron oxides in acid mine drainage environments and their association with bacteria Ferris, F.G;Tazaki, K;Fyfe, W.S https://doi.org/10.1016/0009-2541(89)90041-7
  12. Dublin: Technical Report 14, Water Technology Research Environmental impact of acid mine drainage on the Avoca River:Metal fluxes in water andsediment. Part Ⅱ. Metal contamination of riverine sediments Herr, C;Gray, N.F
  13. Elsevier Applied Science Mining and the freshwater environment Kelly, M
  14. Environ. Geol v.42 Mineralogical characterization of microbial ferrihydrite and schwertmannite, and non-biogenic Al-sulfate precipitates from acid mine drainage in the Donghae mine area, Korea Kim, J.J;Kim, S.J;Tazaki, K https://doi.org/10.1007/s00254-002-0530-2
  15. PhD Thesis, Seoul National University Mineralogical and geochemical characterization of precipitates from the acid mine drainage in Taebaeg Kim, J.J
  16. Appl. Geochem v.16 Pollution of a water course impacted by acid mine drainage in the Imgok creek of the Gangreung coal field, Korea Kim, J.Y;Chon, H.T https://doi.org/10.1016/S0883-2927(01)00039-7
  17. Earth Miner. Sci v.63 Recent technology related to the treatment of acid drainage Michaud, L.H
  18. European Jour. Miner v.7 The first occurrence of schwertmannite in a natural stream environment Schwertmann, U;Bigham, J.M;Murad, E https://doi.org/10.1127/ejm/7/3/0547
  19. Environmental impacts of mining:monitoring, restoration, and control Sengupta, M
  20. Environ. Geol. Water. Sci v.11 Iron sulfide oxidation and the chemistry of acid generation Sullivan, P.J;Yelton, J.L;Reddy, K.J https://doi.org/10.1007/BF02574818
  21. Soil Sci. Soc. Am. J v.50 Evaporite mineralogy associated with saline seeps in southwestern North Dakota Timpson, M.E;Richardson, J.L;Keller, L.P;McCarthy, G.J https://doi.org/10.2136/sssaj1986.03615995005000020048x
  22. Soil Sci. Soc. Am. J v.46 Evaporite mineral species in Mancos shale and salt efforescence, Upper Colorado River Basin Whittig, L.D;Deyo, A.E;Tanji, K.K https://doi.org/10.2136/sssaj1982.03615995004600030039x
  23. Aquatic Geochem v.1 Precipitation of Fe and Al compounds from the acid mine waters in the Dogyae area, Korea: A qualitative measure of equilibrium modeling applicability and neutralization capacity Yu, J.Y
  24. Applied Geochem v.16 Dilution and removal of dissolved metals from acid mine drainage along Imgok creek, Korea Yu, J.Y;Heo, B https://doi.org/10.1016/S0883-2927(01)00017-8