References
- Biotechnol. Lett. v.21 Metabolic engineering of the terpenoid biosynthetic pathway of Escherichia coli for production of the carotenoids β-carotene and zeaxanthin Albrecht, M.;N. Misawa;G. Sandmann https://doi.org/10.1023/A:1005547827380
- Mol. Gen. Genet. v.252 Stable nuclear transformation of diatom Phaeodactylum tricornutum Apt, K. E.;P. G. Kroth-Pacific
- Annu. Rev. Microbiol. v.51 Genetics of eubacterial carotenoid biosynthesis: A colorful tale Armstrong, G. A. https://doi.org/10.1146/annurev.micro.51.1.629
- Photochem. Photobiol. v.60 Influence of the pool size of the xanthophyll cycle on the effect of light strees in a diatom-competition betwwen photoprotection and photoinhibition Arsalane, W.;B. Roussearu;J.C. Duval https://doi.org/10.1111/j.1751-1097.1994.tb05097.x
- Phil. Trans. R. Soc. Lond. B. v.355 Molecular genetics of xanthophylls-dependent photoprotection in green algae and plants Baroli, I.;K. K. Niyogi https://doi.org/10.1098/rstb.2000.0700
- J. Phycol. v.18 Accumulation of β-carotene-rich globules from Dunaliella bardawil (Chlorophycear) Ben-Amotz, A.;A. Katz;M. Avron https://doi.org/10.1111/j.1529-8817.1982.tb03219.x
- Trends Biotechnol. v.8 The biotechnology of cultivating the halotolerant alga Dunaliella Ben-Amotz, A.;M. Avron https://doi.org/10.1016/0167-7799(90)90152-N
- Plant Physiol. v.91 Mode of action of the massively accumelated β-carotene of Dunaliella bardawil in protecting the alga against damage by excess irradiation Ben-Amotz, A.;A. Shaish;M. Avron https://doi.org/10.1104/pp.91.3.1040
- FEBS Lett v.367 Complete separation of the β,ε and ββ-carotenoid biosynthesis by a uniqye metation of the lycopene cyclase in the green alga, Senedesmus obliquus Bishop, N. I.;Y. Urbig;H. Senger https://doi.org/10.1016/0014-5793(95)00510-G
- Bor. Acta v.111 Photosynthetic capacity and quantum requirement of three secondary mutants of Scenedesmus obliquus with deletions in carotenoid biosynthesis Bishop, N. I.;B. Bulga;H. Senger
- Invest. Ophthalmol. Vis. Sci. v.29 Analysis of the macular pigment by HPLC: Retinal distribution and age study Bone, R. A.;J. T. Landrum;L. Fernandez;S. L. Tarisis
- Micro-algal Biotechnology Vitamins and fine chemicals from microalgae Borowitzka, M. A.;Borowitzka, M. A.(ed.);L. J. Borowitzka(ed.)
- Profiles on Biotechnology. Servicio de Publicaciones Comparing carotenogenesis in Dunaliella and Haematococcus: Inplcations for commercial strategies Borowitzka, M. A.;Villa, T. G.(ed.);J. Abalde(ed.)
- J. Appl. Phycol. v.3 Culture of the astazanthin-producing green alga Haematococcus pluvialis. I. Effects of nutrients on growth and cell type Borowitzka, M. A.;J. M. Husiman;A. Osborn
- Physiol. Plant. v.108 Carotenogenesis in the green alga Haematococcus plubialis: Cellular physiology and stress response Boussiba, S. https://doi.org/10.1034/j.1399-3054.2000.108002111.x
- Plant Cell Physiol. v.32 Astaxanthin accumulation in the green alga Haematococcus pluvialis Boussiba, S.;A. Vonshak
- Cling. Nutr. v.7 The chemisty of carotenoids and their importance in food Daun, H.
- Curr. Microbiol. v.35 Stable transformation of Chlorella: Rescue of nitrate reductase-deficient mutants with the nitrate reductase gene Dawson, H. N.;R. Burlingame;A.C. Cannons https://doi.org/10.1007/s002849900268
- J. Biotechnol. v.76 Carotenoid content of chlorophycean microalgae. Factors determining lutein accumulation in Muriellopsis sp. (Chlorophysta) Del Campo, J. A.;J. Moreno;H. Rodriguez;M. A. Vargas;J.Rivas;M. G. Guerrero https://doi.org/10.1016/S0168-1656(99)00178-9
- J. Biotechnol. v.85 Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor Del campo, J. A.;H. Rodriguez;J. Moreno;M. A. Vargas;J. Rivas;M. G. Guerrero https://doi.org/10.1016/S0168-1656(00)00380-1
- Mar. Eco. Prog. Ser. v.76 Rapid light-induced changes in cell fluorescence and in xanthophyll-cycle pigments of Alezandrium excavatum (Dinophyceae) and Thalassiosira pseudonana (Bacillariophyceae) - A photoprotection Demers, S.;S. Roy;R. Gagnon;C. Vignault https://doi.org/10.3354/meps076185
- Plant Physiol v.84 Photoinhibition and zeaxanthin formation in intact leaves. A possible role of the xanthophyll cycle in the dissipation of excess light energy Demmig, B.;K. A. Winter;A. Kruger;F. C. Czygan https://doi.org/10.1104/pp.84.2.218
- FASEB. J. v.10 Carotenoids 3: In vivo function of carotenoids in higher plants Demmig-Adams, B.;A. M. Gilmore;W. W. Adams
- Biochim. Ciophys. Acta v.1020 Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin Demming-Adams, B. https://doi.org/10.1016/0005-2728(90)90088-L
- Annu. Rev. Plant Physiol. Plant Mol. Biol. v.43 Phoroprotection and other respinses of plants to high light stress Demmig-Adams, B.;W. W. Adams III https://doi.org/10.1146/annurev.pp.43.060192.003123
- J. Phycol. v.31 Genetic transformation of the diatoms Cyclotella ctyptica and Navicaula saprophila Dunahay, T. G.;E. E. Jarvis;P. G. Rossler https://doi.org/10.1111/j.0022-3646.1995.01004.x
- J. Phycol. v.30 Effecto of temperature and irradiance on growth of Haematococcus pluvialis (Chlorophyceae) Fan, L.;A. Vonshak;S. Boussiba https://doi.org/10.1111/j.0022-3646.1994.00829.x
- J. Mol. Biol. v.314 Functional architecture of the major light-harvesting comples from higher plants. Formaggio, E.;G. Cinque;R. Bassi https://doi.org/10.1006/jmbi.2000.5179
- Comp. Biochem. Phyiol. v.86 Natural occurrence of enantiomeric and meso astaxanthin in crustaceans including zooplankton Foss, P.
- Phsyciol. Plant. v.99 Mechanistic aspects of xanthophyll cycle dependent photoptotection in higher plant chloroplasts and leaves Gilmore, A. M. https://doi.org/10.1111/j.1399-3054.1997.tb03449.x
- Photosynth. Res. v.35 Linear models relating xanthophylls and lumen acidity to nonphotochemical fluirescence qeunching: Evidence that antheraxanthin explains zeaxanthin-independent quenching Gilmore, A. M.;H. Y. Yamamoto https://doi.org/10.1007/BF02185412
- Planta v.205 The xanthophyll cycle of mantoniella squamata converts violaxanthin into antheraxanthin but not to zeaxanthin: consequences for the mechanism of enhanced non-photochemical energy dissipation Goss, R.;L. Bohme;C. Wilhelm https://doi.org/10.1007/s004250050364
- Annu. Rev. Plant Physiol. Plant Mol. Biol. v.47 The chlorophyllcarotenoid proteins of oxygenic photosynthesis Green, B. R.;D. G. Durnford https://doi.org/10.1146/annurev.arplant.47.1.685
- Annu. Rev. Genet. v.29 Light-harvesign complexes in oxygenic photosynthesis: Diversity, control, and evolution Grossman, A. R.;D. Bhaya, K. E. Apt;D. M. Kehoe https://doi.org/10.1146/annurev.ge.29.120195.001311
- J. Biol. Chem. v.276 Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga Haematococcus pluvialis Grunewald, K.;J. Hirschberg;C. Hagen https://doi.org/10.1074/jbc.M006400200
- Plant Cell Environ. v.16 Functional aspects of secondary carotenoids in Haematococcus lacustris (Girod) Rostafinski (Volvocales). V. Influences on photomovement Hagen, C.;W. Braune;K. Vogel;P. P. Hader https://doi.org/10.1111/j.1365-3040.1993.tb00523.x
- Pigments in Plants. The reversible, light-indced conversions of xanthophylls in the chloroplast Hager, A.;Czygan, F. C.(ed.)
- Planta v.192 Localization of the xanthophyll-cycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of its mobility by a (lightdependent) pH decrease Hager, A.;K. Holocher
- Invest. Ophrhalmol. Vis. Sci. v.29 Carotenoids in the human macula and whole retina Handelman, G. J. ;E. A. Dratz;C. C. Reay;F. J. G. M. van Kuijk
- FEBS Lett. v.404 Viosynthesis of ketocarotenoids in transgenic cyanobacteria expressing the algal gene for β-C-4-oxygenase, crtO Harker, M;J. Hirschberg https://doi.org/10.1016/S0014-5793(97)00110-5
- Annu. Rev. Plant. Physiol. Plant. Mol. Biol. v.47 Regulation of light farvesting in green plants Horton, P;A. V. Ruban;R. G. Walters https://doi.org/10.1146/annurev.arplant.47.1.655
- Plant. Physiol. v.113 Accumulation of zeaxanthin in abscicic acid-deficient mutants of Arabidopsis does not affect chlorophyll quenching or sensitivity to photoinhibition in vivo Eurry, V.;J. M. Andersson;W. S. Chow;C. B. Osmond
- Arch. Ophthalmol. v.106 Antioxidant status in persons with and without senile cataract Jaeques, P. F.;L. T. Chylack;R. B. McGandy;S. C. Hartz https://doi.org/10.1016/0002-9394(88)90371-6
- Biochem. Biophys. Acta. v.1184 The light-harvestion chlorophyll a/bbinding proteins Jansson, S https://doi.org/10.1016/0005-2728(94)90148-1
- Biotech. Bioeng. v.81 A mutant of the green alga Dunaliella salina constitutively accumulates zeaxanthin under all growth conditions Jin, E. S.;B. Feth;A. melis https://doi.org/10.1002/bit.10459
- Biochem. Biophys. Acta v.1506 Involvement of zeaxanthin and of the Cbr protein in the repair of photosystera-II from photoinhibition in the green alga Dunaliella salina Jin, E. S.;J. W. E. Polle;A. Melis https://doi.org/10.1016/S0005-2728(01)00223-7
- Comp. Biochem. Physiol. v.78 Catrotenoids in the Pacific salmon during the marine period Katahara, T https://doi.org/10.1016/0300-9629(84)90646-7
- Haematococcus pluvialis. J. Ferment. Bioeng. v.74 Effects of lignt intensity, light qualiry, and illumination cycle on astaxanthin formation in a green alga Kaobayashi, M.;T. Kakizono;N. Nishio;S. Nagai https://doi.org/10.1016/0922-338X(92)90271-U
- J. Nutr. v.120 Stuctural and geometric isomers of carotenoids in human plasma Krinsky, N. I.;M. D. Russett;G. J. Handelman;D. M. Snocderly
- Nature v.367 Atomic model of plant light-harvesting complex by electron crystallography Kuehlbranct, W.;D. N. Wang;Y. Fujiyoshi https://doi.org/10.1038/367614a0
- Appl. Environ. Microbiol v.66 Increased production of zeaxanthin and other pigments by appliacation of genetic engineering techniques to Synechocystis sp. strain PCC 6803 Largarde, D.;L. Beuf;W. Vermasa https://doi.org/10.1128/AEM.66.1.64-72.2000
- Arch. Biochem. Biophys v.385 Lutein, zeaxanthin and the macular pigment Landrum, J. T.;R. Bone https://doi.org/10.1006/abbi.2000.2171
- Accessory light-harvesting pigments Lawlor, D. W.
- Cancer Epidemiol. Bimarkerr Prev. v.2 Intake of specific carotenoids and lung cancer risk Le Marachand, L.;J.H. Hankin;L. N. Kolonel;G. R. Beecher;L. R. Wikens;L .P. Zhao
- Proc. Natl. Acad. Sci. USA v.96 Algae displaying the ciadinoxanthin cycle also possess the violaxanthin cycle Lohr, M.;C. Wilhelm https://doi.org/10.1073/pnas.96.15.8784
- Planta v.212 Xanthophyll synthesis in diatoms: Quantifications of putative intermediate and comparison of pigment conversion kinetics with rate constants derive form a model Lohr, M.;C. Wilhelm https://doi.org/10.1007/s004250000403
- Trends Biotechnol. v.18 Commercial potential for Hamatococcus microalgae as a natural source of astaxanthin Lorenz, R. T.;G. R. Cysewski https://doi.org/10.1016/S0167-7799(00)01433-5
- FEBS Lett. v.364 Cloning and expression in E. coli of the gene encoding β-C-4-oxygenase that converts β-carotene to the keto carotenoids carotenoids cantaxanthin in Haematococcus pluvilais Lotan, T.;J. Hirschberg https://doi.org/10.1016/0014-5793(95)00368-J
- Appl. Microbiol. Biotechnol. v.51 Production of keto carotenoids by microalgae Margalith, P. Z. https://doi.org/10.1007/s002530051413
- EMBO J. v.15 Molecular identification of zeaxanthin eposznthin eposidase of Nicotiana plumbaginifolia, a gene involved in absicic acid biosynthesis and corresponding to ABA locus of Arabido[sis thaliana Marin, E.;L. Nussaume;A. Quesada;M. Gonneau;B. Sotta;P. Hugueney;A. Frey;A. Marion-Poll
- J. Biotechnol v.59 Metabolic engineering for the production of carotenoids in non-carotenogenic vacteria and yeast Misawa, N.;H. Shimada https://doi.org/10.1016/S0168-1656(97)00154-5
- Biochem. Biophys. Res. Commum. v.209 Canthazanthin viosynthesis by the conversion of methylene to keto groups in a hydrocarbon β-carotene by a single gene Misawa, N.;S. Kajiwara;K. Kondo;A. Yokoyama;Y. Satomi https://doi.org/10.1006/bbrc.1995.1579
- J. Bacteriol. v.177 Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic parhway proposed at the gene level Misawa, N. Y.;Satomi, K. Kondo;A. Yokoyama;S. Kajiwara
- Proc. Natl. Acad. Sci. USA v.94 The roles of specific xanthophylls in photoprotection Niyogi, K. K.;O. Bjorkman;A. R. Grossman https://doi.org/10.1073/pnas.94.25.14162
- Plant. Cell. v.9 Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching Niyogi, K. K.;O. Bjorkman;A. R. Grossman https://doi.org/10.1105/tpc.9.8.1369
- Photosynth. Res. v.41 Nonphotochemical fluorescence quenching and the diadinoxanthin cycle in a marine diatom Olaizola, M.;J. LaRoche;Z. Kolber;P. G. Falkowski https://doi.org/10.1007/BF00019413
- Biotechnol. Lett. v.23 Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions Orosa, M.;J. F. Valero;C. Herrero;J. Abalde https://doi.org/10.1023/A:1010510508384
- J. Microbiol. Biotechnol. v.11 Astaxanthin production by Haematococcus pluvialis under various light intensity and wavelengths Park, E. K.;C. G. Lee
- Plant. Cell v.8 Arabidopsis carotenoid mutants demonsstrate that lutein is not essential for photosynthesis in higher plants Pogson, B. J.;K. A. McDonald;M. Truong;G. Britton;D. DellaPenna https://doi.org/10.1105/tpc.8.9.1627
- Proc. Natl. Acad. Sci. USA v.95 Altered xanthophyll compositions adversely affect chlorophyll accumulation and non-photochemical quenching in Aravidopsis mutants Pogson, B. J.;K. K. Niyogi;O. Bjorkman;D. DellaPenna https://doi.org/10.1073/pnas.95.22.13324
- Plant Physiol v.116 Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular algaDunaliella bardawil. Rabbani, S.;P. Beyer;J. von Lintig;P. Hugueney;H. Kleinig https://doi.org/10.1104/pp.116.4.1239
- Progress in Phycological Research 7 Large scale microalgal culture and applications Richmond, A.;Round, M.(ed.);Chapman(ed.)
- Photosynth. Res. v.67 Antisense inhibition of the beta carotene hydroxylase enzyme in Arabidopsis and the implication for carotenoids accumulation, photoprotection and antenna assembly Rissler, M. H.;B.J. Pogson https://doi.org/10.1023/A:1010669404183
- Proc. Natl. Acad. Sci. USA v.88 The aba mutant of Arabidopsis thaliana is impaired in epoxy carotenoid biosynthesis Rock, C. D.;J. A. D. Zeevaart
- J. Am. Diet. Assoc. v.96 Update on the biological characteriustics of the antioxidant micronutrients: Vitamin C, vitamin E and the carotenoids Rock, C. L.;R. A. Jacob;P. E. Bowen https://doi.org/10.1016/S0002-8223(96)00190-3
- J. Am. Med. Assoc. v.272 Dietary carotenoids, vitamins A, C, and E, and adbanced age-related macular degeneration Seddon, J. M.;U. A. Ajani;R. D. Sperduto;R. Hiller;N. Blair;T. C. Burton;M. D. Farber;E. S. Gragoudas;J. Haller;D. T. Miller;L. A. Yannuzzi;W. Wilett https://doi.org/10.1001/jama.272.18.1413
- Planta v.190 Are active oxygen species involved in induction of β-catotene in Dunaliella bardawil? Shaish, A.;M. Avron;U. Pick;A. Amotz
- Am. J. Clin.Nutr. v.62 Evidence for protection against agerelated macular degeneration by varotenoids and antioxidant vitamins Snodderly, M. D.
- Plant. Physiol v.125 Regulation of two carotenoid biosynthesis genes coding stress-induced astazanthin formationin the green alga Haematococcus pluvialis Steinbrenner, J.;H. Linden https://doi.org/10.1104/pp.125.2.810
- J. Phycol. v.33 Genetic engineering of eukaryotic algae: Progress and prospects Stevens, D. R.;S. Purton
- Arch. Mikrobiol. v.73 The carotenoid pattern and the occurrence of the light-induced xanthophyll cycle in various classes of algae. VI . Chemosystematic study Stransky, H.;A. Hager https://doi.org/10.1007/BF00412298
- Proc. Natl. Acad. Sci. USA v.95 Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte Sun, Z.;F. X. Jr. Cunningham;E. Grantt https://doi.org/10.1073/pnas.95.19.11482
- J. Photochem. Photobiol. v.34 Photosynthesis, chlorophyll fluorescence, light-harvesting system and photoinhibition resistance of a zeaxanthin-axxumulating mutant of Arabidopsis thaliana Tardy, F.;M. Havaux https://doi.org/10.1016/1011-1344(95)07272-1
- Biotech. Lett. v.16 Hyper-accumulation of astaxanthin in a green alga Haematococcus pluvialis at elevated temperatures Tjahjono, A. E.; Y. Hayama;T. Kakizono;Y. Terada;N. Nishio;S. Nagai https://doi.org/10.1007/BF01021659
- J. Microbiol. Biotechnol. v.12 Interactive effect of UV-B and pesticides on photosynthesis and nitrogen fixation of Anabaena doliolum Vandana, P.;L. C. Rai
- Plant. Physiol. Biochem. v.28 The biochemistry and physiology of light-harvesting processes in chlorophyll b containing and chlorophyll c containing algae Wilhelm, C.
- Invest. Ophthalmol. Vis. Sci. v.36 Measurement of carotenoids, retinoids, and tocopherols in human lenses Yeum, K. J.;A. Taylor;G. Tang;R. M. Russel
- Ttrahedron Lett. v.39 Production of new carotenoid, astaxanthin glucosides, by E. coli. trasformations carrying carotenoid biosynthetic genes Yokoyama, A.;Y. Shizuri;N. Misawa https://doi.org/10.1016/S0040-4039(98)00542-5
- Science v.292 Trophic conversion of an obligate photoautotrophic organism through engineering Zaslavskaia, L. A.;J. C. Lippmeier;C. Shih;D. Ehrhardt;A. R. Grossman;K. E. Apt https://doi.org/10.1126/science.160015
- J. Phycol. v.36 Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes Zaslavskaia, L. A.;J. C. Lippmeier;P. G. Kroth;A. R. Grossman;K. E. Apt https://doi.org/10.1046/j.1529-8817.2000.99164.x
- Appl. Microbiol. Biotechnol. v.55 Twostep process for ketocarotenoid production by a green alga, Chlorococcum sp. strain MA-1 Zhang, D. H;Y. K. Lee https://doi.org/10.1007/s002530000526
- J. Natl. Carcer Inst. v.88 Importance of α-carotene, β-carotene and other phytochemicals in the etiology of lung cancer Ziegler, R. G.;E. A. Colavito;P. Hartge;M. J. McAdams https://doi.org/10.1093/jnci/88.9.612