Xanthophylls in Microalgae: From Biosynthesis to Biotechnological Mass Production and Application

  • Jin, Eon-Seon (Environmental Science laboratory, Korea Ocean Research and Development Institute(KORDI)) ;
  • Polle, Juergen E.W. (Brooklyn College of the City university of New York, Biology Department, USA) ;
  • Lee, Hong-Kum (Microbiology Laboratory, Korea Ocean Research and Development Institute) ;
  • Hyun, Sang-Min (Environmental Science laboratory, Korea Ocean Research and Development Institute(KORDI)) ;
  • Chang, Man (Environmental Science laboratory, Korea Ocean Research and Development Institute(KORDI))
  • Published : 2003.04.01

Abstract

Xanthophylls are oxygenated carotenoids that serve a variety of functions in photosynthetic organisms and are essential for survival of the organism. Within the last decade, major nor advances have been made in the elucidation of the molecular genetics and biochemistry of the xanthophyll biosynthesis pathway. Microalgae, yeast, or other microorganisms produce some of the xanthophylls that are being commercially used due to their own color and antioxidant properties. Currently, only a few microalgae are being considered or already being exploitd for the production of high-value xanthophylls. However, new developments in molecular biology have important implications for the commercialization of microalgae, and make the genetic manipulation of the xanthophyll content of microalgae mure attractive for biotechnological purposes. Accordingly, the current review summarizes the general properties of xanthophylls in microalgae and the recent developments in the biotechnological production of xanthophylls.

Keywords

References

  1. Biotechnol. Lett. v.21 Metabolic engineering of the terpenoid biosynthetic pathway of Escherichia coli for production of the carotenoids β-carotene and zeaxanthin Albrecht, M.;N. Misawa;G. Sandmann https://doi.org/10.1023/A:1005547827380
  2. Mol. Gen. Genet. v.252 Stable nuclear transformation of diatom Phaeodactylum tricornutum Apt, K. E.;P. G. Kroth-Pacific
  3. Annu. Rev. Microbiol. v.51 Genetics of eubacterial carotenoid biosynthesis: A colorful tale Armstrong, G. A. https://doi.org/10.1146/annurev.micro.51.1.629
  4. Photochem. Photobiol. v.60 Influence of the pool size of the xanthophyll cycle on the effect of light strees in a diatom-competition betwwen photoprotection and photoinhibition Arsalane, W.;B. Roussearu;J.C. Duval https://doi.org/10.1111/j.1751-1097.1994.tb05097.x
  5. Phil. Trans. R. Soc. Lond. B. v.355 Molecular genetics of xanthophylls-dependent photoprotection in green algae and plants Baroli, I.;K. K. Niyogi https://doi.org/10.1098/rstb.2000.0700
  6. J. Phycol. v.18 Accumulation of β-carotene-rich globules from Dunaliella bardawil (Chlorophycear) Ben-Amotz, A.;A. Katz;M. Avron https://doi.org/10.1111/j.1529-8817.1982.tb03219.x
  7. Trends Biotechnol. v.8 The biotechnology of cultivating the halotolerant alga Dunaliella Ben-Amotz, A.;M. Avron https://doi.org/10.1016/0167-7799(90)90152-N
  8. Plant Physiol. v.91 Mode of action of the massively accumelated β-carotene of Dunaliella bardawil in protecting the alga against damage by excess irradiation Ben-Amotz, A.;A. Shaish;M. Avron https://doi.org/10.1104/pp.91.3.1040
  9. FEBS Lett v.367 Complete separation of the β,ε and ββ-carotenoid biosynthesis by a uniqye metation of the lycopene cyclase in the green alga, Senedesmus obliquus Bishop, N. I.;Y. Urbig;H. Senger https://doi.org/10.1016/0014-5793(95)00510-G
  10. Bor. Acta v.111 Photosynthetic capacity and quantum requirement of three secondary mutants of Scenedesmus obliquus with deletions in carotenoid biosynthesis Bishop, N. I.;B. Bulga;H. Senger
  11. Invest. Ophthalmol. Vis. Sci. v.29 Analysis of the macular pigment by HPLC: Retinal distribution and age study Bone, R. A.;J. T. Landrum;L. Fernandez;S. L. Tarisis
  12. Micro-algal Biotechnology Vitamins and fine chemicals from microalgae Borowitzka, M. A.;Borowitzka, M. A.(ed.);L. J. Borowitzka(ed.)
  13. Profiles on Biotechnology. Servicio de Publicaciones Comparing carotenogenesis in Dunaliella and Haematococcus: Inplcations for commercial strategies Borowitzka, M. A.;Villa, T. G.(ed.);J. Abalde(ed.)
  14. J. Appl. Phycol. v.3 Culture of the astazanthin-producing green alga Haematococcus pluvialis. I. Effects of nutrients on growth and cell type Borowitzka, M. A.;J. M. Husiman;A. Osborn
  15. Physiol. Plant. v.108 Carotenogenesis in the green alga Haematococcus plubialis: Cellular physiology and stress response Boussiba, S. https://doi.org/10.1034/j.1399-3054.2000.108002111.x
  16. Plant Cell Physiol. v.32 Astaxanthin accumulation in the green alga Haematococcus pluvialis Boussiba, S.;A. Vonshak
  17. Cling. Nutr. v.7 The chemisty of carotenoids and their importance in food Daun, H.
  18. Curr. Microbiol. v.35 Stable transformation of Chlorella: Rescue of nitrate reductase-deficient mutants with the nitrate reductase gene Dawson, H. N.;R. Burlingame;A.C. Cannons https://doi.org/10.1007/s002849900268
  19. J. Biotechnol. v.76 Carotenoid content of chlorophycean microalgae. Factors determining lutein accumulation in Muriellopsis sp. (Chlorophysta) Del Campo, J. A.;J. Moreno;H. Rodriguez;M. A. Vargas;J.Rivas;M. G. Guerrero https://doi.org/10.1016/S0168-1656(99)00178-9
  20. J. Biotechnol. v.85 Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor Del campo, J. A.;H. Rodriguez;J. Moreno;M. A. Vargas;J. Rivas;M. G. Guerrero https://doi.org/10.1016/S0168-1656(00)00380-1
  21. Mar. Eco. Prog. Ser. v.76 Rapid light-induced changes in cell fluorescence and in xanthophyll-cycle pigments of Alezandrium excavatum (Dinophyceae) and Thalassiosira pseudonana (Bacillariophyceae) - A photoprotection Demers, S.;S. Roy;R. Gagnon;C. Vignault https://doi.org/10.3354/meps076185
  22. Plant Physiol v.84 Photoinhibition and zeaxanthin formation in intact leaves. A possible role of the xanthophyll cycle in the dissipation of excess light energy Demmig, B.;K. A. Winter;A. Kruger;F. C. Czygan https://doi.org/10.1104/pp.84.2.218
  23. FASEB. J. v.10 Carotenoids 3: In vivo function of carotenoids in higher plants Demmig-Adams, B.;A. M. Gilmore;W. W. Adams
  24. Biochim. Ciophys. Acta v.1020 Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin Demming-Adams, B. https://doi.org/10.1016/0005-2728(90)90088-L
  25. Annu. Rev. Plant Physiol. Plant Mol. Biol. v.43 Phoroprotection and other respinses of plants to high light stress Demmig-Adams, B.;W. W. Adams III https://doi.org/10.1146/annurev.pp.43.060192.003123
  26. J. Phycol. v.31 Genetic transformation of the diatoms Cyclotella ctyptica and Navicaula saprophila Dunahay, T. G.;E. E. Jarvis;P. G. Rossler https://doi.org/10.1111/j.0022-3646.1995.01004.x
  27. J. Phycol. v.30 Effecto of temperature and irradiance on growth of Haematococcus pluvialis (Chlorophyceae) Fan, L.;A. Vonshak;S. Boussiba https://doi.org/10.1111/j.0022-3646.1994.00829.x
  28. J. Mol. Biol. v.314 Functional architecture of the major light-harvesting comples from higher plants. Formaggio, E.;G. Cinque;R. Bassi https://doi.org/10.1006/jmbi.2000.5179
  29. Comp. Biochem. Phyiol. v.86 Natural occurrence of enantiomeric and meso astaxanthin in crustaceans including zooplankton Foss, P.
  30. Phsyciol. Plant. v.99 Mechanistic aspects of xanthophyll cycle dependent photoptotection in higher plant chloroplasts and leaves Gilmore, A. M. https://doi.org/10.1111/j.1399-3054.1997.tb03449.x
  31. Photosynth. Res. v.35 Linear models relating xanthophylls and lumen acidity to nonphotochemical fluirescence qeunching: Evidence that antheraxanthin explains zeaxanthin-independent quenching Gilmore, A. M.;H. Y. Yamamoto https://doi.org/10.1007/BF02185412
  32. Planta v.205 The xanthophyll cycle of mantoniella squamata converts violaxanthin into antheraxanthin but not to zeaxanthin: consequences for the mechanism of enhanced non-photochemical energy dissipation Goss, R.;L. Bohme;C. Wilhelm https://doi.org/10.1007/s004250050364
  33. Annu. Rev. Plant Physiol. Plant Mol. Biol. v.47 The chlorophyllcarotenoid proteins of oxygenic photosynthesis Green, B. R.;D. G. Durnford https://doi.org/10.1146/annurev.arplant.47.1.685
  34. Annu. Rev. Genet. v.29 Light-harvesign complexes in oxygenic photosynthesis: Diversity, control, and evolution Grossman, A. R.;D. Bhaya, K. E. Apt;D. M. Kehoe https://doi.org/10.1146/annurev.ge.29.120195.001311
  35. J. Biol. Chem. v.276 Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga Haematococcus pluvialis Grunewald, K.;J. Hirschberg;C. Hagen https://doi.org/10.1074/jbc.M006400200
  36. Plant Cell Environ. v.16 Functional aspects of secondary carotenoids in Haematococcus lacustris (Girod) Rostafinski (Volvocales). V. Influences on photomovement Hagen, C.;W. Braune;K. Vogel;P. P. Hader https://doi.org/10.1111/j.1365-3040.1993.tb00523.x
  37. Pigments in Plants. The reversible, light-indced conversions of xanthophylls in the chloroplast Hager, A.;Czygan, F. C.(ed.)
  38. Planta v.192 Localization of the xanthophyll-cycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of its mobility by a (lightdependent) pH decrease Hager, A.;K. Holocher
  39. Invest. Ophrhalmol. Vis. Sci. v.29 Carotenoids in the human macula and whole retina Handelman, G. J. ;E. A. Dratz;C. C. Reay;F. J. G. M. van Kuijk
  40. FEBS Lett. v.404 Viosynthesis of ketocarotenoids in transgenic cyanobacteria expressing the algal gene for β-C-4-oxygenase, crtO Harker, M;J. Hirschberg https://doi.org/10.1016/S0014-5793(97)00110-5
  41. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. v.47 Regulation of light farvesting in green plants Horton, P;A. V. Ruban;R. G. Walters https://doi.org/10.1146/annurev.arplant.47.1.655
  42. Plant. Physiol. v.113 Accumulation of zeaxanthin in abscicic acid-deficient mutants of Arabidopsis does not affect chlorophyll quenching or sensitivity to photoinhibition in vivo Eurry, V.;J. M. Andersson;W. S. Chow;C. B. Osmond
  43. Arch. Ophthalmol. v.106 Antioxidant status in persons with and without senile cataract Jaeques, P. F.;L. T. Chylack;R. B. McGandy;S. C. Hartz https://doi.org/10.1016/0002-9394(88)90371-6
  44. Biochem. Biophys. Acta. v.1184 The light-harvestion chlorophyll a/bbinding proteins Jansson, S https://doi.org/10.1016/0005-2728(94)90148-1
  45. Biotech. Bioeng. v.81 A mutant of the green alga Dunaliella salina constitutively accumulates zeaxanthin under all growth conditions Jin, E. S.;B. Feth;A. melis https://doi.org/10.1002/bit.10459
  46. Biochem. Biophys. Acta v.1506 Involvement of zeaxanthin and of the Cbr protein in the repair of photosystera-II from photoinhibition in the green alga Dunaliella salina Jin, E. S.;J. W. E. Polle;A. Melis https://doi.org/10.1016/S0005-2728(01)00223-7
  47. Comp. Biochem. Physiol. v.78 Catrotenoids in the Pacific salmon during the marine period Katahara, T https://doi.org/10.1016/0300-9629(84)90646-7
  48. Haematococcus pluvialis. J. Ferment. Bioeng. v.74 Effects of lignt intensity, light qualiry, and illumination cycle on astaxanthin formation in a green alga Kaobayashi, M.;T. Kakizono;N. Nishio;S. Nagai https://doi.org/10.1016/0922-338X(92)90271-U
  49. J. Nutr. v.120 Stuctural and geometric isomers of carotenoids in human plasma Krinsky, N. I.;M. D. Russett;G. J. Handelman;D. M. Snocderly
  50. Nature v.367 Atomic model of plant light-harvesting complex by electron crystallography Kuehlbranct, W.;D. N. Wang;Y. Fujiyoshi https://doi.org/10.1038/367614a0
  51. Appl. Environ. Microbiol v.66 Increased production of zeaxanthin and other pigments by appliacation of genetic engineering techniques to Synechocystis sp. strain PCC 6803 Largarde, D.;L. Beuf;W. Vermasa https://doi.org/10.1128/AEM.66.1.64-72.2000
  52. Arch. Biochem. Biophys v.385 Lutein, zeaxanthin and the macular pigment Landrum, J. T.;R. Bone https://doi.org/10.1006/abbi.2000.2171
  53. Accessory light-harvesting pigments Lawlor, D. W.
  54. Cancer Epidemiol. Bimarkerr Prev. v.2 Intake of specific carotenoids and lung cancer risk Le Marachand, L.;J.H. Hankin;L. N. Kolonel;G. R. Beecher;L. R. Wikens;L .P. Zhao
  55. Proc. Natl. Acad. Sci. USA v.96 Algae displaying the ciadinoxanthin cycle also possess the violaxanthin cycle Lohr, M.;C. Wilhelm https://doi.org/10.1073/pnas.96.15.8784
  56. Planta v.212 Xanthophyll synthesis in diatoms: Quantifications of putative intermediate and comparison of pigment conversion kinetics with rate constants derive form a model Lohr, M.;C. Wilhelm https://doi.org/10.1007/s004250000403
  57. Trends Biotechnol. v.18 Commercial potential for Hamatococcus microalgae as a natural source of astaxanthin Lorenz, R. T.;G. R. Cysewski https://doi.org/10.1016/S0167-7799(00)01433-5
  58. FEBS Lett. v.364 Cloning and expression in E. coli of the gene encoding β-C-4-oxygenase that converts β-carotene to the keto carotenoids carotenoids cantaxanthin in Haematococcus pluvilais Lotan, T.;J. Hirschberg https://doi.org/10.1016/0014-5793(95)00368-J
  59. Appl. Microbiol. Biotechnol. v.51 Production of keto carotenoids by microalgae Margalith, P. Z. https://doi.org/10.1007/s002530051413
  60. EMBO J. v.15 Molecular identification of zeaxanthin eposznthin eposidase of Nicotiana plumbaginifolia, a gene involved in absicic acid biosynthesis and corresponding to ABA locus of Arabido[sis thaliana Marin, E.;L. Nussaume;A. Quesada;M. Gonneau;B. Sotta;P. Hugueney;A. Frey;A. Marion-Poll
  61. J. Biotechnol v.59 Metabolic engineering for the production of carotenoids in non-carotenogenic vacteria and yeast Misawa, N.;H. Shimada https://doi.org/10.1016/S0168-1656(97)00154-5
  62. Biochem. Biophys. Res. Commum. v.209 Canthazanthin viosynthesis by the conversion of methylene to keto groups in a hydrocarbon β-carotene by a single gene Misawa, N.;S. Kajiwara;K. Kondo;A. Yokoyama;Y. Satomi https://doi.org/10.1006/bbrc.1995.1579
  63. J. Bacteriol. v.177 Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic parhway proposed at the gene level Misawa, N. Y.;Satomi, K. Kondo;A. Yokoyama;S. Kajiwara
  64. Proc. Natl. Acad. Sci. USA v.94 The roles of specific xanthophylls in photoprotection Niyogi, K. K.;O. Bjorkman;A. R. Grossman https://doi.org/10.1073/pnas.94.25.14162
  65. Plant. Cell. v.9 Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching Niyogi, K. K.;O. Bjorkman;A. R. Grossman https://doi.org/10.1105/tpc.9.8.1369
  66. Photosynth. Res. v.41 Nonphotochemical fluorescence quenching and the diadinoxanthin cycle in a marine diatom Olaizola, M.;J. LaRoche;Z. Kolber;P. G. Falkowski https://doi.org/10.1007/BF00019413
  67. Biotechnol. Lett. v.23 Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions Orosa, M.;J. F. Valero;C. Herrero;J. Abalde https://doi.org/10.1023/A:1010510508384
  68. J. Microbiol. Biotechnol. v.11 Astaxanthin production by Haematococcus pluvialis under various light intensity and wavelengths Park, E. K.;C. G. Lee
  69. Plant. Cell v.8 Arabidopsis carotenoid mutants demonsstrate that lutein is not essential for photosynthesis in higher plants Pogson, B. J.;K. A. McDonald;M. Truong;G. Britton;D. DellaPenna https://doi.org/10.1105/tpc.8.9.1627
  70. Proc. Natl. Acad. Sci. USA v.95 Altered xanthophyll compositions adversely affect chlorophyll accumulation and non-photochemical quenching in Aravidopsis mutants Pogson, B. J.;K. K. Niyogi;O. Bjorkman;D. DellaPenna https://doi.org/10.1073/pnas.95.22.13324
  71. Plant Physiol v.116 Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular algaDunaliella bardawil. Rabbani, S.;P. Beyer;J. von Lintig;P. Hugueney;H. Kleinig https://doi.org/10.1104/pp.116.4.1239
  72. Progress in Phycological Research 7 Large scale microalgal culture and applications Richmond, A.;Round, M.(ed.);Chapman(ed.)
  73. Photosynth. Res. v.67 Antisense inhibition of the beta carotene hydroxylase enzyme in Arabidopsis and the implication for carotenoids accumulation, photoprotection and antenna assembly Rissler, M. H.;B.J. Pogson https://doi.org/10.1023/A:1010669404183
  74. Proc. Natl. Acad. Sci. USA v.88 The aba mutant of Arabidopsis thaliana is impaired in epoxy carotenoid biosynthesis Rock, C. D.;J. A. D. Zeevaart
  75. J. Am. Diet. Assoc. v.96 Update on the biological characteriustics of the antioxidant micronutrients: Vitamin C, vitamin E and the carotenoids Rock, C. L.;R. A. Jacob;P. E. Bowen https://doi.org/10.1016/S0002-8223(96)00190-3
  76. J. Am. Med. Assoc. v.272 Dietary carotenoids, vitamins A, C, and E, and adbanced age-related macular degeneration Seddon, J. M.;U. A. Ajani;R. D. Sperduto;R. Hiller;N. Blair;T. C. Burton;M. D. Farber;E. S. Gragoudas;J. Haller;D. T. Miller;L. A. Yannuzzi;W. Wilett https://doi.org/10.1001/jama.272.18.1413
  77. Planta v.190 Are active oxygen species involved in induction of β-catotene in Dunaliella bardawil? Shaish, A.;M. Avron;U. Pick;A. Amotz
  78. Am. J. Clin.Nutr. v.62 Evidence for protection against agerelated macular degeneration by varotenoids and antioxidant vitamins Snodderly, M. D.
  79. Plant. Physiol v.125 Regulation of two carotenoid biosynthesis genes coding stress-induced astazanthin formationin the green alga Haematococcus pluvialis Steinbrenner, J.;H. Linden https://doi.org/10.1104/pp.125.2.810
  80. J. Phycol. v.33 Genetic engineering of eukaryotic algae: Progress and prospects Stevens, D. R.;S. Purton
  81. Arch. Mikrobiol. v.73 The carotenoid pattern and the occurrence of the light-induced xanthophyll cycle in various classes of algae. VI . Chemosystematic study Stransky, H.;A. Hager https://doi.org/10.1007/BF00412298
  82. Proc. Natl. Acad. Sci. USA v.95 Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte Sun, Z.;F. X. Jr. Cunningham;E. Grantt https://doi.org/10.1073/pnas.95.19.11482
  83. J. Photochem. Photobiol. v.34 Photosynthesis, chlorophyll fluorescence, light-harvesting system and photoinhibition resistance of a zeaxanthin-axxumulating mutant of Arabidopsis thaliana Tardy, F.;M. Havaux https://doi.org/10.1016/1011-1344(95)07272-1
  84. Biotech. Lett. v.16 Hyper-accumulation of astaxanthin in a green alga Haematococcus pluvialis at elevated temperatures Tjahjono, A. E.; Y. Hayama;T. Kakizono;Y. Terada;N. Nishio;S. Nagai https://doi.org/10.1007/BF01021659
  85. J. Microbiol. Biotechnol. v.12 Interactive effect of UV-B and pesticides on photosynthesis and nitrogen fixation of Anabaena doliolum Vandana, P.;L. C. Rai
  86. Plant. Physiol. Biochem. v.28 The biochemistry and physiology of light-harvesting processes in chlorophyll b containing and chlorophyll c containing algae Wilhelm, C.
  87. Invest. Ophthalmol. Vis. Sci. v.36 Measurement of carotenoids, retinoids, and tocopherols in human lenses Yeum, K. J.;A. Taylor;G. Tang;R. M. Russel
  88. Ttrahedron Lett. v.39 Production of new carotenoid, astaxanthin glucosides, by E. coli. trasformations carrying carotenoid biosynthetic genes Yokoyama, A.;Y. Shizuri;N. Misawa https://doi.org/10.1016/S0040-4039(98)00542-5
  89. Science v.292 Trophic conversion of an obligate photoautotrophic organism through engineering Zaslavskaia, L. A.;J. C. Lippmeier;C. Shih;D. Ehrhardt;A. R. Grossman;K. E. Apt https://doi.org/10.1126/science.160015
  90. J. Phycol. v.36 Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes Zaslavskaia, L. A.;J. C. Lippmeier;P. G. Kroth;A. R. Grossman;K. E. Apt https://doi.org/10.1046/j.1529-8817.2000.99164.x
  91. Appl. Microbiol. Biotechnol. v.55 Twostep process for ketocarotenoid production by a green alga, Chlorococcum sp. strain MA-1 Zhang, D. H;Y. K. Lee https://doi.org/10.1007/s002530000526
  92. J. Natl. Carcer Inst. v.88 Importance of α-carotene, β-carotene and other phytochemicals in the etiology of lung cancer Ziegler, R. G.;E. A. Colavito;P. Hartge;M. J. McAdams https://doi.org/10.1093/jnci/88.9.612