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Tests to Detect Changes in Micro-Flora Composition
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Abstract

Good’s lambda test, a permutation test used to detect the changes of microorganism
composition under two pathological conditions, has been quite popular for studying the
micro-flora responsible for periodontal disease. A vast number of different micro-flora
in the mouth renders the traditional chi-square test inapplicable. The main purpose of
this paper is to evaluate the power of this test so that the sample size can be
determined at the design stage. The robustness of this test and its comparison to two
other intuitive tests are also presented. It is found that a permutation test based on
likelihood ratio is more powerful than the lambda test in our simulated cases.

Keywords : closeness, composition, lambda test, likelihood ratio, permutation test, power.
1. Introduction

The A-test, introduced by Good(1982), seems to be the only available test for testing the
change of a multinomial distribution when the number of categories is large. The traditional
chi-square test is not applicable because most of the cells have very few observations.
Merging cells is also questionable because it can be done only after the data have been
gathered. Forming a hypothesis after observing the data makes the true significance level very
difficult to compute.

The A-test was constructed to fill this gap. It is especially useful in determining the
change of microorganisms in two pathological conditions when the micro—flora species are
numerous, such as the micro-flora in the mouth. This test has been routinely used in
periodontal disease research.(Moore et al.(1982, 1991), Socransky et al.(1981))

The A-statistic is the ratio of the total between group closeness to the total within group
closeness but the distribution of the A-statistic is not known. We use permutation test to find
the distribution of A under the null and under the alternative. When we analyze an
experiment with a permutation test, we compare the observed value of the test statistic with
the set of other values we obtain by rearranging and relabeling the data. Permutation tests
can provide exact significance levels and the large-sample power of permutation tests was
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studied.(Hoeffding (1952))

We suggest two reasonable tests for comparison, where one is measuring closeness by the
square of the Euclidean distance and the other is the likelihood ratio test. The main purpose
of this paper is to evaluate the power and the null hypothesis significance level of three tests,
so that we can answer the sample size question. Furthermore, we will study the permutational
distributions of three tests.

In the next section, we introduce the design, some notation, and the test statistics of
interest. Section 3 gives power comparisons of three tests. Section 4 describes in detail the
permutational method and permutational distributions of three tests. In section 5, we give
concluding remarks.

2. Notation and Tests

To define the basic notation, suppose there are two disease populations, where one may
serve as the control. A sample of patients from each population is drawn and for each patient
a vector of microorganisms is obtained from the culture of certain tissue or secretion sample

from the patient. Let the sample sizes of the two groups be #n; and #y and the micro-flora
counts be X,;={x;,%p,...,%x} for the ith individual in group 1, 7=1,2,...,7#; and
Y,={¥1,¥2,...,¥ix} be that of the jth individual in group 2, j=1,2,...,%#3. In most

practical situations, the number of possible species K is large and unknown, and many of the
cells may end up with 0 observation. However, it will be clear that the tests discussed in this
paper do not depend on K. Thus, we may assume that K is a large fixed number that
covers all possible microorganisms. The goal is to test whether the microorganism

compositions are the same in the two populations. Let the proportional composition for X;

and Y, be respectively,

P,={pa.bp,....0;), and Q;={4qp,ap,...,9ix},

where

D= Xal my;, my;= glxm, and ijk=y;‘k/mzj, my; = gl%‘k-
Good(1982) defined the closeness between two general proportional vectors P=

{ P02, ...,0k} and Q={4qy,q3,...,qx} as

o P,Q)= gl min(py, qp). (1)
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This denotes the similarity index and we note that & P, Q)=1 when P= Q and
8( P, Q) =0 when P and Q have mutually exclusive sets of positive elements. Also we

note that (1) is not affected when K is unknown. Let the total within group closeness W be
defined by

W= W+ W,
Wl=§a(P,., P)), Wz=§.a( Q. Q),

and the total between group closeness be
B=224 P;, Q).
Then the A-statistic is defined as

_ B/(n,ny)
W/ n(n,— 1)+ ny(ny,— 1)1

A (2)

and the null hypothesis should be rejected when A is too small. The A-statistic is the ratio
of the average value of & between groups to the average within groups. Hence if A is too
small, then it shows some degree of difference in compositions between two groups.
Unfortunately, the distribution of A, even under the null hypothesis that the two populations
are identical, seems intractable. Good(1982) suggests that permutation be used to find the
distribution of A under the null hypothesis. More precisely, one will partition the combined 7,

and #n, data randomly into two groups with sizes #; and #;, compute the A of this

partition, repeat the process over a large number of times, and use the Monte-Carlo sample to
estimate the distribution of A. The p-value is the quantile point of the original A in the
estimated distribution. But at the design stage, a question often asked by the experimenter is
what should be the sample size? Since the determination of the micro-flora composition is
based on counting the micro-flora colonies in culture plates, the process is usually time
consuming and expensive. In this paper we will give answer the sample size question based
on power study.

There seems to be no discussion on the optimality of using (1) and (2) to test the change
in two multinomial distributions. The reason must be due to the vast amount of possibilities
of the alternative hypothesis. Here we suggest two reasonable tests for comparison. The one
is to measure closeness by the square of the Euclidean distance
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d P, Q= 2 (h—a)". @

This distance is again unaffected by the unknown number K and if the & used for (2) is

replaced by d in (3), then we should reject the null hypothesis if A is too large.
We may also choose to use the likelihood ratio as a rejection criterion. It is obvious that

both X; and Y; have multinomial distributions. The likelihood functions under the null

hypothesis is then

7 R 7 A
my;: My; x1+y. zxty.
L(w)= II I II I 'S
=1 Xj 7

,....xiK! = y,l!...y,-K.

n n

where x,= 2x,~k , V= 2: vix, and the p, is the true proportion of species
1= 1=

k, k=1,..., K. Similarly, under the alternative hypothesis the likelihood function becomes

L(.Q)—_— ﬁ mli! px.l_._px.l(ﬁ mZi! q)’.l_”q.V.K
= xﬂ!...x,-K! ! K 7= yﬂ!...y,x! 1 K >

where the g, is the true proportion of species /% in the second group. We reject the null

hypothesis if the statistics A is too large, and

A= gx.klnx_;ﬁ ;y-kan’.k"Mllan—Mglan @
— g(x.k'f‘Y.k)ln(x'k+y_k)+(M1+ M) In(M;+ M),

where M;= gx.k and M,= ,ﬁ\ y ». By the convention (In0=0, this test does not depend

on K either. Since the number of empty cells is large, we do not expect the asymptotic

chi-square distribution for 2A to work, and also, we do not expect any analytic solution for
the tests (2) and (4). The distribution can be obtained by the simulation based on random
partitions as before.
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3. Power Estimation

Let the true frequency distribution of the populations 1 and 2 be F= { p,}f‘;l and

G=1{g}%,, respectively. Thus, under the null hypothesis F= G, it is difficult to specify a

general alternative hypothesis. We can think of two scenarios that may have some general
application;

In population 2,
(A1) there is a small shift of prevalence in all the categories, or
(A2) the main difference is in a few species.

We feel the latter seems more applicable in pathology; i.e., several pathogens flourish during
the disease. There are many necessary parameters in power computation. The two obvious

parameters are the significance level a and the sample sizes #; and #;. We assume #,= #%;
at the design stage. The data X; and Y; depend on the colony sizes my; and my; in the
culture. For example, the abundance of micro-flora ; of patient 7 in group 1, p;= the
number of colonies of micro-flora j / total number of colonies in the culture. Thus, if the
number of colonies is small, it is not possible to have a large number of nonzero pj;’s.
These number of colonies per culture will vary somewhat in the actual culturing, but we
assume it is a constant m=m;=my; in the design stage. Moreover, we need the
configurations of F and G, which may contain many unknown parameters.

We first approximate the configurations of F and G with a gamma density function.
Without loss of generality, we may consider F as the discretized distribution of a continuous

density function Ax), i.e,

pi= [ fod, i=1.2....K, with [ Andex0. ®

i
Similarly, we define g¢;= f; _lg(x)dx. The two parameter gamma density family is rich

enough to represent a large variety of frequency distributions.(Fisher et al.(1943)) A simulation
program is written for the power for any input of gamma densities Ax) and g(x), K,
n,=ny, the colony size m, and the level of significance @. We can choose the design

parameters, but we have found that the power is not very sensitive to the choice of the
gamma density functioris. Thus, a guideline can be provided even without a good specification

of the actual configurations of F and G. The major finding can be summarized as follows.
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We have found that under the alternative hypothesis (Al), tests based on (1), (3) and (4)
have little advantage over each other, but (1) and (4) are much more powerful than (3) when
the alternative is (A2). Also, between (1) and (4), (4) is better. A representative result for
(Al) is given in Table 1, where under the null hypothesis Ax)= g(x)= gamma(a=2,
B=0.077) according to the usual gamma density function parameterization. For power
computation, Ax) is still gamma(2, 0.077), but g(x) has been shifted to gamma(2.5, 0.082), or
(3.0, 0.092). These numbers were chosen to satisfy requirement (5) with K=100. Figure 1
shows the magnitude of the frequencies and the shift in composition. Every species has a
small change in frequency. This table is representative because it covers a large range of
powers. Some other tables may go to the extreme so quickly that the powers are either very
small or close to 1.0, and in these cases, the powers for all three tests are very similar.

0.025

G(2.5, 0.082] G(3, 0.092)

by

Figure 1. Gamma densities (@, 8) = (2.5, 0.082)(vertical lines) and (e, 8) = (3, 0.092)(curve)
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Table 1. Power comparisons of A, Euclidean distance and likelihood ratio permutation tests
when the shift of species frequencies is everywhere. Table I is for the null hypothesis
significance level and Tables II and III are for the powers.

[. (a, A=(2,0.077) under the null.
n1=mny=5 n1=n2=10 n1=n2=15
m | Lambda Squared LRT |Lambda Squared LRT |Lambda Squared LRT

25 0.056 0.050 0.059 0.067 0.058 0.056 0.049 0.054 0.038
50 0.064 0.055 0.065 0.051 0.055 0.056 0.052 0.056 0.051
75 0.058 0.056 0.049 0.044 0.051 0.049 0.058 0.058 0.048
100 0.051 0.053 0.052 0.062 0.065 0.051 0.053 0.048 0.048
125 0.043 0.054 0.054 0.052 0.057 0.055 0.042 0.046 0.040
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O. (e, H=(2,0.077) and (2.5, 0.082) under the alternative.

ni=mny,=5 ni=ny=10 ni=mny=15

m Lambda Squared LRT |Lambda Squared LRT |Lambda Squared LRT
25 0.093 0.092 0.103 0.158 0.146 0.187 0.253 0.249 0.317
50 0.175 0.162 0.195 0.349 0.344 0.395 0577 0.547 0.629
75 0.254 0.226 0.295 0.605 0574 0.665 0.827 0.837 0.891

100 0.297 0.316 0.359 0.769 0.740 0.814 0.948 0.941 0.970
125 0.417 0.405 0.466 0.880 0.844 0.923 0.981 0.983 0.996

m. (a, B)=(2,0.077) and (3, 0.092) under the alternative.
n1=n2=5 nl=n2=10 nl=n2=15
m Lambda Squared LRT |Lambda Squared LRT |Lambda Squared LRT

25 0.201 0.202 0.231 0.441 0.418 0.531 0.711 0.698 0.784
50 0.437 0.413 0.499 0.880 0.858 0.926 0.991 0.989 0.995

() 0.658 0.675 0.764 0.989 0.982 0.99% 1.0 10 1.0
100 0.847 0.820 0.905 1.0 1.0 1.0 1.0 1.0 1.0
125 0.945 0.929 0.977 1.0 1.0 1.0 1.0 1.0 1.0

Three representative results for (A2) is given in Figures 2-4 and Tables 2-4, where we
assume that there is a 1% increase in each of the 5 least prevalent species, i.e., the proportion
of the last 5 species has each increased from nearly 0 to 0.01. The proportions of the rest
species were normalized so that the total proportions became 1. We can see that in this
situation, the likelihood ratio test is much better than the Euclidean distance test and
considerably better than the A-test. These tables also show that the power is insensitive to
the change in Ax). Thus, we may conclude that both the likelihood ratio test and the A-test
are robust to the species composition.

0.02 0.03 0.04 0.05

0.01

G(1, 0.054)

Figure 2. Gamma density (a, 8 = (1, 0.054).
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Table 2. The null hypothesis significance level and power comparisons of the three tests
when the alternative is a 1% increase in each of the 5 least prevalent species.

(a, B)=(1,0.054) under the null.

n1=mn,=5 ny=mn,=10 ny=mny,=15

m |Lambda Squared LRT |Lambda Squared LRT |Lambda Squared LRT
25 0.056 0.056 0.062 0.073 0.069 0.075 0.043 0.040 0.042
50 0.051 0.047 0.055 0.056 0.055 0.055 0.046 0.047 0.052
75 0.053 0.056 0.066 0.059 0.056 0.056 0.040 0.044 0.045

100 | 0.053 0.054 0:049 0.048 0.052 0.046 0.042 0.046 0.055
125 | 0.051 0.052 0.050 0.062 0.057 0.052 0.060 0.052 0.042

(a, /=(1,0.054) and a 19 increase in each of the 5 least prevalent species under the alternative.

n1=Mny=5 ni1=n,=10 ni=ny=15

m Lambda Squared LRT |Lambda Squared LRT |Lambda Squared LRT

25 0.074 0.083 0.102 0.111 0.079 0.196 0.178 0.109 0.374
50 0.134 0.091 0.19% 0.290 0.134 0.545 0.450 0.204 0.816
75 0.197 0.110 0.373 0.473 0.195 0.841 0.763 0.320 0.98
100 0.305 0.138 0.548 0.668 0.278 0.948 0.926 0.494 0.998
125 0.373 0.172 0.665 0.823 0.375 0.990 0.984 0.651 1.0

G(2, 0.077)

“”jllln

Figure 3. Gamma density (a, 8) =(2, 0.077).
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Table 3. Power comparisons of the three tests when the alternative is a 1% increase in each

of the 5 least prevalent species.

(2,8 =(2,0.077) and a 1% increase in each of the 5 least prevalent species under the alternative.

n1=n2=5 n1=n2=10 n1=n2=15

m Lambda Squared LRT |Lambda Squared LRT |Lambda Squared LRT
25 0.103 0.082 0.100 0.113 0.093 0.188 0.163 0.116 0.326
50 0.126 0.091 0.195 0.278 0.162 0.521 0.452 0.231 0.805
75 0.205 0.120 0.351 0.509 0.289 0.826 0.765 0.389 0.978
100 0.260 0.144 0.491 0.680 0.351 0.950 0.930 0.583 0.998
125 0.379 0.190 0.668 0.820 0.455 0.985 0.988 0.745 1.0

g.

84 G(4, 0.114)
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Figure 4. Gamma density (a, 8) = (4, 0.114).

Table 4. The null hypothesis significance level and power comparisons of the three tests

when the alternative is a 19 increase in each of the 5 least prevalent species.

(a, B)=(4,0.114) under the null.

n1=n2=5 n1=n2=10 n1=n2=15
m Lambda Squared LRT |Lambda Squared LRT |Lambda Squared LRT
25 0.046 0.053 0.043 0.060 0.049 0.052 0.050 0.045 0.044
50 0.039 0.039 0.046 0.052 0.049 0.052 0.042 0.042 0.047
7 0.045 0.053 0.053 0.049 0.044 0.044 0.052 0.050 0.051
100 0.045 0.047 0.049 0.057 0.055 0.065 0.049 0.047 0.041
125 0.054 0.051 0.050 0.041 0.048 0.040 0.040 0.045 0.057
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(e, B=(4,0.114) and a 1% increase in each of the 5 least prevalent species under the alternative.

n1=n2=5 n1=n2=10 n1=n2=15
Lambda Squared LRT |lLambda Squared LRT |Lambda Squared LRT
0.087 0.082 0.104 0.131 0.108 0.184 0.152 0.125 0.327
0.123 0.106 0.187 0.300 0.187 0.508 0.420 0.246 0.798
0.181 0.111 0.304 0.449 0.243 0.785 0.766 0.434 0.977
100 0.272 0.154 0.477 0.659 0.351 0.938 0.923 0.620 0.997
125 0.375 0.187 0.632 0.822 0.477 0.990 0.982 0.790 1.0

SRR

Figure 5 displays power curves for the likelihood ratio tests at »#=25, 10, 15, where the
alternative hypotheses are a) H;: (a, 8)=(2,0.077),(2.5,0.082) and b) Hy: (a, 8)=(2,0.077)

and 1% increase in each of the 5 least prevalent species, respectively. Based on these pictures,
if the number of species is 100, then the sample size should be at least 10, and colony size
should be at least 75 to get a good power.

- =15~ R:}g
n=10
i) ©
o o
o o n=5
§o bo
B ns 2
g R
o o
o~ o~
o
o o
25 50 75 100 125 25 50 75 100 125
colony size colony size
a) b)

Figure 5. Power curves for the likelihood ratio test: Hy: (a, 8)=(2,0.077) for each group.
a) H: (a,8)=1(2,0.077),(2.5,0.082)
b) H;: (a,8)=1(2,0.077) and 1% increase in each of the 5 least prevalent species
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4. The Permutational Distribution

Permutation tests have a wide range of applications, and it requires relatively weak
assumptions, e.g., that the underlying distributions are symmetric and the alternatives are
shifts in value(Good(1994)). It is a computational intensive resampling method. With nowadays
computing power, it is widely applicable to many moderate size data sets. The detail of the
design and extent of the simulation are given in the Appendix.

The computations of the null hypothesis significance level and powers are based on 1000
Mote Carlo runs. One of these 1000 Monte Carlo runs was illustrated in Figure 6 as an
example. All the other runs were similar. For this run, the permutational distributions of the
A-statistics using (1), (3), and likelihood ratio test statistics at #n;=#,=>5,10,15 were
calculated by performing 1000 Monte Carlo runs under the null and under the alternative,
separately. The null hypothesis is (e, 8)=(2,0.077) in group 1 and 2, and the alternative
hypothesis is (a, 8)=(2,0.077) in group 1 and a 1% increase in each of the 5 least
prevalent species in group 2. The pictures in Figure 6 was made at m=100 using kernel
density function.

As sample size increases, the permutation test distributions of three tests become
symmetric. For A-statistics using (1) and (3) the permutation test distributions under the null
are similar to those under the alternative. But, for the likelihood ratio test statistic, the
distributions under the alternative are shifted to the right compared to the distributions under
the null.

o (=)
1] o
A
o I o
0 L] o
[m) o
L <«
o o
o~ ~N
o o
0.9 0.95 1 1.05 1.1 0.9 0.95 1 1.08 1.1

Lambda ( Hp) Lambda ( Hy)
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Figure 6. Examples of the permutation test distribution of three tests under the null and
under the alternative.

Hy: (a, B)=1(2,0.077)
Hy: (a,B)=1(2,0.077) in group 1 and a 1% increase in each of the 5 least

prevalent species in group 2

5. Concluding Remarks

This paper shows that the permutation test using the likelihood ratio may be more powerful
than A-test in testing the change of micro-flora composition under a likely pathological
condition. Tables are provided for the sample size determination under this condition.

Confirming the change in micro-flora is the first step towards the identification of the



Tests to Detect Changes in Micro-Flora Composition 223

bacteria that cause the disease. When the null hypothesis is rejected, an obvious choice for
the responsible bacteria is to select bacteria that have the biggest differences in two groups.
However, a large number of species makes the threshold for this type of multiple comparisons
difficult. It seems that these bacteria can be confirmed only by forming a more specific
hypothesis in a subsequent study.

The simulation program is written in FORTRAN. This program, which uses double

precision, runs interactively. We can provide input parameters, which are the parameters of
the gamma distribution (a, 8), the sample size (»,= n;), the number of possible species K,
the number of colonies m, the level of significance @, and the number of iterations. The
gamma random numbers are generated from the uniform random number generator described
in L’Ecuyer(1988). A FORTRAN program implementing these tests is available from the

authors.

Appendix : The Simulation Study

We used repeated simulated samples to get the significance level and power. For instance,
to compute the power, we generated data sets for the two groups, X;={xi,%g,....,%i},
i=1,...,n, and Y;={y1,¥p,....¥x}, /=1, ...,m, according to the multinomial probabilities
{p}. and {g} defined by (5). From this data set, we computed the A-statistics using
distance (1) and (3), and also computed the likelihood ratio test statistic (4). Let the values of
these statistics be A(p, A, and A, respectively. The next step was to find the distributions
of these statistics using random permutation. More specifically, we partitioned the combined
n; and n, data randomly into two groups of #; and %, and computed three statistics for

this partition. This process was repeated a large number of times (1,000 was used). Let /1*(1)

be the @l00% quantile and A%, A* be the (1—a)100% quantile from the sample
distributions. Qur decision on which hypothesis to accept was based on comparing the data
values with the quantiles of /1'(1), A*@3, and A*. We repeated this whole process 1,000

times, and kept a record of the number of null hypothesis rejections. The powers were the
average number of rejections, and the null hypothesis significance levels were obtained under

the null distribution F= G.
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