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Abstract

In this paper we develop a robust procedure to estimate regression coefficients for
a linear model with censored and truncated data based on simplicial regression depth.
Simplicial depth of a point is defined as the proportion of data simplices containing it.
This simplicial depth can be extended to regression problem with censored and
truncated data. Any line can be given a depth and the deepest regression line is the
line with the maximum simplicial regression depth. We show how the proposed
regression performs through analyzing AIDS incubation data.
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1. Introduction

To investigate the relationship between covariates and censored response, one can use a
linear regression model. An estimation of regression coefficients has been investigated by
Miller (1976), Buckley and James (1979), Koul et al (1981), Miller and Halpern (1982), and
Zhou (1992), among others. The linear model is further generalized to the censored and
truncated data by Gross and Lai (1996). Estimation of the regression coefficients is usually
based on the least squares type estimations or M-estimations, and they require that the
conditional distribution of the response given the covariates (the distribution of the error term)
has certain properties such as non-skewness or homoskedasticity. And these estimation
procedures are not robust in the sense that a few observations can have a serious influence
on the analysis of the model.

As a robust estimation procedure for regression coefficients, Rousseeuw and Hubert (1999)
proposed a method to define regression depth of a line. For multi-dimensional location
problem, there are several methods to define depth of a point (see Hwang et al, 2002).
Rousseeuw and Hubert (1999) extended the concept of halfspace location depth to a line in
regression problem. And any line can be given a rank using regression depth and the deepest
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regression line is the line with the maximum regression depth. Rousseeuw and Hubert (1999)

showed that the deepest regression line has a break-down value of 1/3, while the least
squares regression line has 0. That is, at least one third of the data need to be replaced to
change arbitrarily the deepest regression line. Another definition of location depth is based in
simplicial depth (Liu, 1990). Simplicial depth of a point is the proportion of the data simplices
containing it. Simplicial depth was extended to regression problem by Rousseeuw and Hubert
(1999).

In this paper, we develop a procedure to find the deepest regression line based on simplicial
depth. In section 2, we define a simplicial regression depth of any line for censored and
truncated data and find the deepest regression line with the maximum depth. Section 3
illustrates the suggested procedure for a real data set and shows how it performs.

2. Simplicial Regression Depth with Censored and Truncated Data

Liu (1990) introduced a notion of simplicial depth. Simplicial depth of a point € in R? with
respect to a p—dimensional distribution F' is defined as
sdepth( 8, F) = Pr(0€S(X, Xs,.... Xp+1)),
where (X;,X,,...,X,+1) is a random sample from F, and S(X X, ...,X,+1) is the
simplex determined by X, Xs, ..., X,41For p—dimensional random sample (X, X3, ...X,) the
sample version of simplicial depth sdepth(6, X, X3, ..., X,) of a location & is defined as

-1
sdepth(axl,xz,...,x,,)=(pjfl) 2 HO=S(X i X iy X)),

where i; takes values in 1,2,...,n Note that ( p-ﬁl )is the number of possible simplices

and simplicial depth is the proportion of the data simplices containing 6. The center of the
distribution can be estimated as the point with the maximum simplicial depth. An underlying
idea od simplicial depth is that the center should be inside of simplices constructed by data as

often as possible.
The notion of simplicial depth was extended to regression problem by Rousseeuw and

Hubert (1999). Suppose that X is a (p—1)— dimensional covariate and Y is the response.
To define depth of a line (plane), they used concept of dual plot. In dual plot, a line
y=60x,+ -+ 0,-1x,_1+ 0, is transformed to a point =(6y,....0,_1,0,) in R® and a
point (x, ..., %,—1,¥)is transformed to a line @y=—x10;— - —xp-10,—1+ ¥, in 0yy...,05-1,0,
axes. The dual plot preserves the ordering of the lines and points in the sense that a point

lying below (on or above) corresponds to a line below (through or above) after transformation
in the dual plot. This is important since simplicial depth is determined by the order of lines

and points.
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For a complete data set (X;,Y)), (X3, Y3),...,(X, Y,) without censoring and truncation,
Rousseeuw and Hubert (1999) defined the simplicial regression depth of a line
y=01x1 + - + Bp—lxp_l + 9ﬂ as

-1
sdepth(el,...,ep)=(pfl) > K6=S(H, Hy, .. . Hy)),

where H, is the hyperplane in dual space corresponding to the :-the observation (X;,Y)

and S(H;,H;,..,H;, ) is the simplex determined by (p+1) hyperplane. The estimated

regression line is defined as the deepest regression line with the maximum simplicial
regression depth. So the estimate of the regression coefficient is defined as
( ..., 8,) = argmax 4, g sdepth(0y,...,0,)

When the response is censored and truncated, iterative procedures or weighted procedures

are usually used to estimate regression coefficient. In this article we use a weighted procedure
to define simplicial regression depth for censored and truncated data. The above simplicial

depth is defined as a sample proportion of simplices containing 6. For censored and truncated
data, the definition of simplicial depth can be modified as a weighted proportion of simplices
containing @ and the weights are determined by the Kaplan-Meier estimates.

Let C; and T; denote a right censoring variable and a left truncation variable, respectively.
Suppose that the (C;, T,) are independent of the (X, ¥Y;) When the Y, are subject to right
censoring, we observe min(Y;, C) and the censoring indicator I(Y,<C), which is 1 if we
sbserve uncensored data and ( otherwise. If the Y; are subject to left truncation in addition
to right censoring, we observe (min(Y;, C), KY,<C), T, only when min(Y;, C) = T;Let

Y; = min(Y;, C) and 8; = KY;<C,) Let

(X, ¥, 0, T) i=1,2,..n with Y, >2T,
denote the observed data. An ordinary right censored data without left truncation corresponds
to the case T=—o°

Let S(f denote the survival function defined by S(f) = Pr(Y = D and let
G(f)=Pr(T < t < C) Define

= inf{ t: G(H > 0},
7= inf{t> r: (=0 or G(H=0}
Then r and r are the left and right boundaries of the interval within which we can observe
the data under left truncation and right censoring. Lai and Ying (1991) showed that the
conditional distribution

F(y=P(Y<ylY=02

can be nonparametrically estimated for y < 7 from left-truncated and right-censored data.
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Suppose @ and b are some constants such that ¢ r and b< r. Let F,(y) be the
product-limit estimator of F,(y) = Pr(Y <y| Y = @) given by

d
Py =1- [1-72]
i @Sy <y n (9
and let §a (» be an  estimator of the conditional survival  function

SAy) = Pr(Y = y| Y > a) given by
_ ' _dw
0=, I [1-+2]

where y () ¥(» < - are the distinct uncensored observations; d () is the multiplicity of

uncensored observations at y(); #(y is the size of the risk set at y(y, Ile,
ney = ZII( T, <yy<Y,) While E[#X,Y)] may not be estimable because of

incomplete information about the distribution of Y, Gross and Lai (1996) showed that
E(n(X,Y)| a<Y<h] for a h( - ), can be consistently estimated by

3a ( ?:)

5 V)’ 1

F 5 ﬁla Ka< Vi<b) WX, V)—e 2

where #( ?,)—_- ﬁ:ll( T]' < ?,' < ?,)
f=
If F()=0 and F(r)=1 the survival function is estimable without the condition
< Y < b And E[2(X, Y)]can be consistently estimated by

S(Y)
ﬁ:a WX, P55

where S( = o [1 - ]Thls implies that E[#(X, Y)lcan be estimated using the
i y() l

weights

S( 7))

# Y)

instead of the equal weight to each observation. Hence it seems natural to define the
simplicial regression depth using the above weights. Note that the above weights are the

W= o

jump sizes of the product-limit estimator F(#), and that the weights are the same as in

Zhou (1992) if the response is only right-censored. Without the condition F(z)=0 and

F(_r)=1 we can use the weight
8; Ka< V,<b) 8,( 1)

7.(0 #( 7)) @

VV{':
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since E[W(X,Y)| a<Y<b] can be consistently estimated by (1).
Following the above arguments, we can define simplicial regression depth for censored and

truncated data as
sdepth(6y,...,0)=a"" 2o KOS(H,, Hi ., Hp, ) (Wit e+ W),

where the summation is over all possible combinations to construct a simplex with uncensored

observations, H; and W, are the hyperplane and the weight corresponding to the i-the
observation (X;, Y;) and a= ‘<2("' (W, +--+W,_.) So the above simplicial regression
12,

depth is a weighted proportion of simplices containing 6, and the weight of a simplex is
determined by the observations corresponding to the simplex.

The simplicial regression depth has value between 0 and 1. When all the uncensored data
lie on a line, the simplicial regression depth of the line is 1. The maximum regression depth
represents the degree of linearity in the data. And the estimated regression line is defined as
the deepest regression line with the maximum simplicial regression depth.

3. Examples and Simulation

In this section we show how the deepest regression line performs for simulated data and
the AIDS incubation data. To see performance of the deepest regression line, we compare the
estimates of regression coefficients based on simplicial regression depth and those based on
least squares. First we generate a data set of sample size 25. The first graph of Figure 1
shows the observations with the deepest regression line and the least squares regression line
with the weights given in (2). We can see that there is not much difference between two

lines. In fact the data are generated from y=60x+6,+¢e with 6, =1and 6,=0 The

estimated deepest regression line is 3=0.830x+0.118 and the weighted least squares line is

$=0.880x—0.043 . To investigate the effect of an outlier, we move the largest observation
to another location as indicated in the second graph of Figure 1. The second graph shows
two regression lines after the observation is moved. Then the weighted least squares line
becomes y=0.640x—0.163 but the deepest regression line does not change. From this
example we can see the deepest regression line is more robust than the least squares

regression line.
To compare two estimation methods, we have done some simulation study. The data are

generated from the simple linear model
Y,‘= 01X,' + 62 ‘f‘, &;

where 6,=1 6,=0 The covariate X; are generated from N(0,1) and the error ¢g; are

generated from N(0, 0.5 and (Gamma(4,4)—1) so that the errors have the mean zero and
variance 0.25. And censoring variables and truncation variables are generated from a uniform
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distribution. Table 1 shows estimates and their standard errors for sample sizes n=230
n=>50) and »n=100 when the errors are from the normal distribution. The estimates and
standard errors are based on 1000 repetitions. For one case of simulation study, 30% of the
data are censored and 25% are truncated. We also investigate the estimates when 50% of the
dara are censored and 35% are truncated. The estimates and their standard errors are given
at Table 2 when the errors are from a Gamma distribution. Throughout the simulation study,
we can see that the biases of the estimates are not significant considering the standard
errors. But the standard errors of estimates based on simplicial regression depth are about
twice of those based on the least squares. The larger variances of estimates of the deepest
regression line seems show the loss of efficiency due to using depth instead of the least
squares estimation. So there is a trade off between efficiency and robustness.

E o~ .
N X censored # outlier
o 0 _#

uncensored

!

Figure 1. The solid line is the deepest regression line and the dashed line is the
weighted least squares regression line

Table 1. Estimates and their standard errors with normal noise

30% censoring, 25% truncation | 50% censoring, 35% truncation
/91 se( /91) /92 se( @2) /B] se( /91) /92 Se( /92)
~30 deepest line 0984 0.260 -0.046 0.214 1.008 0375 -0.099 0.303
= leaset squares| 1.025 0.149 -0.088 0.148 1.031 0194 -0.121 0.177
_50 deepest line 0998 0.234 -0.038 0.173 1010 0261 -0.113 0.201
= leaset squares| 1.041 0121 -0.094 0.116 1046 0.143 -0.133 0.141
~100 deepest line 1.013 0203 -0.040 0.131 1011 0206 -0.099 0.152
n least squares | 1.057 0.094 -0.099 0.082 1.060 0.098 -0.134 0.100
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Table 2. Estimates and their standard errors with gamma noise

30% censoring, 25% truncation | 50% censoring, 35% truncation
B, se( D) By se By) B, se(B) 0, se( By)
1230 deepest line 0993 0.281 -0.108 0.206 0991 0.337 -0.153 0.241
leaset squares| 1.029 0.146 -0.099 0.136 1.030 0.163 -0.133 0.155
1250 deepest line 0991 0.217 -0.105 0.162 1.005 0230 -0.142 0.177
leaset squares{ 1.036 0.102 -0.103 0.098 1038 0.116 -0.135 0.113
=100 deepest line 0982 0.172 -0.094 0.120 0983 0.170 -0.148 0.126
least squares | 1.044 0.075 -0.103 0.066 1.045 0.080 -0.135 0.077

The AIDS incubation data include 295 cases of HIV infection by blood or blood-product
transfusion reported to the Center for Disease Control prior to January 1, 1987, and diagnosed
prior to July 1, 1986. The data consists of three variables; INF is the month of infection with
1=January of 1987 and 101=June of 1986; DIAG is the duration of the induction period in
months; and AGE is the age+1 (in years) at the time of infection. Following Kalbfleisch and
Lawless (1989), the response variable Y is the incubation period defined as DIAG-0.5. Since
only the patients diagnosed prior to July 1, 1986 are recruited into the study, the data are
right truncated. The right truncation variable T is 101.5-INF. We observe (Y, T) when
Y < T The relationship between the age of patients (AGE=age + 1) and the incubation time
(DIAG) was investigated by Gross and Lai (1996)) wusing a linear model,
— log(DIAG) = 0,( AGE) + 0+ ¢ Then response Y =—log(DIAG) is left truncated by

T =—1og(101.5— INF). Because of the different characteristics between children (age<4),
adults (5<age<59), elderly (age>60) patients, the data set is divided into three groups. Table
3 shows the estimates of regression coefficients and their bootstrap standard errors. The
standard errors are estimated by 1000 bootstrap repetitions. The least squares estimates are
taken from Gross and Lai (1996). We use the same values for a and b as in Gross and Lai
(1996) and the weights given in (2). We can see the differences between estimates are not
significant considering the bootstrap standard errors. However, note that the standard errors of
the estimates by depth regression are greater than the least squares estimates as in the

previous simulation study.
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Table 3. Estimates of regression coefficients and their bootstrap standard errors

least squares estimates simplicial regression depth estimates
AGE B se( B By se( By) B se(By) B, se( B)
a=—4.38,b=—1.84
age < 4 -0.412 0.036 -1915 0.086 -0531 008 -1.772 0.229
5< age <59 [-0.006 0.003 -4.136 0.162 0014 0.008 -4302 0.308
age = 60 0024 0016 -2355 1.063 -0065 0.051 0771 3535
a=-3.5,=—1.84
age < 4 -0.376 0086 -1974 0.163 -0531 0115 -1.772 0.253
5< age <59 |-0.004 0.004 -3266 0.195 0022 0.007 -4354 0.290
age = 60 -0.002 0.009 -2980 0.590 -0.013 0.060 -23% 4179

In this article we have proposed a method to define the simplicial regression depth for
censored and truncated data. To define regression depth, we have used the weights obtained

from the product-limit estimator instead of equal weights.

From the simulation study, we can see that influence of a few observations on the deepest
regression line is not serious compared to the least squares line. However there are some
drawbacks with the regression depth. As we have seen in the simulation study, there is some
loss of efficiency. Since the regression depth is not derived from the criterion to minimize the
mean square error, the estimates by the regression depth may lose some efficiency compared

to the least square estimates.
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