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Empirical Comparisons of Disparity Measures for Partial
Association Models in Three Dimensional Contingency Tables
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Abstract

This work is concerned with comparison of the recently developed disparity
measures for the partial association model in three dimensional categorical data. Data
are generated by using simulation on each term in the log-linear model equation
based on the partial association model, which is a proposed method in this paper.
This alternative Monte Carlo methods are explored to study the behavior of disparity
measures such as the power divergence statistic KA), the Pearson chi-square statistic
X?, the likelihood ratio statistic G°, the blended weight chi-square statistic BWCS(A),
the blended weight Hellinger distance statistic BWHID(A), and the negative exponential
disparity statistic NED(A) for moderate sample sizes. We find that the power
divergence statistic I(2/3) and the blended weight Hellinger distance family
BWHD(1/9) are the best tests with respect to size and power.

Keywords : Disparity measure, Goodness-of-fit, Hellinger distance, Log-linear model, Power
divergence statistic.

1. Introduction

Three-dimensional IxJx K contingency tables are considered with observed cell frequencies
{x;} corresponding to the probabilities {z;} of the multinomial distribution. The saturated

log-linear model (say, [123]) of the expected frequencies {m)} is

Inmg= u+ uyn+ uynt usnt Ut izt Unint iz (1

with the usual restrictions on parameters u's (see Bishop et al.,, 1975).
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The concept of three-factor {or second-order) interaction was first introduced by Bartlett
(1935) in 2x2x2 contingency table. Goodman (1964) proposed several methods for analyzing
the three—factor interaction in a three dimensional IXJxK table (also see Bhapker and Koch
(1968), Grizzle, Starmer and Koch (1969)). Larntz (1978) and Haber (1984) compared several
tests of no three-factor interaction for only 3x3x3 and 2x2x2 contingency tables
respectively.

The null hypothesis of no three-factor interaction is

Hy : wypm=0
or (2)
Hy @ Inmyg= utwuyy+ uyy+ szt wioan+ Uizt Uasie

for i=1,..,I-1, j=1,....,J—-1 and k=1,...,K—1, which is called as the partial association
model (say, [12][13]1[23]). The constraint equations specification of H, is known to be (see,
e.g., Roy and Kastenbaum (1956))

HOZ lnﬂ'i,'k_lnﬂ'ljk—lnﬂi]k—lnﬂin+ln7Tm{+1n7[Uk+lnﬂ’[,'K—lnﬂ'UK=O

or

H. T _ iKUK @)
Tofipe  TGRTHK

for i=1,...,I-1, j=1,..,J-1 and k=1,...,K—-1.

Several chi-square statistics are available in the literature for testing the above hypothesis
H, in IxJxK contingency table. The Pearson’s chi-square and log likelihood ratio statistics
have long been used to perform tests of hypotheses about the parameters of a multinomial
distribution.

Cressie and Read (1984), and Read and Cressie (1988) developed a class of goodness-of-fit
test statistics called the family of the power divergence statistics denoted by {KA);ie R}.
They presented an analytical discussion of the asymptotic differences between different I(A)
tests with a considerable amount of numerical finite sample results. Cressie and Read (1984)
showed that the statistic X(2/3) is an excellent and compromising alternative to any other
goodness-of-fit test statistics based on a multimonial distribution.

An even more general class of goodness-of-fit test statistics of which the family of the
power divergence statistics is a subclass was studied. These test statistics, which is called
the disparity test statistics, have been derived following the minimum disparity estimation
approach of Lindsay (1993, 1994). And Lindsay (1994) and Basu and Sarkar (1994) introduced
two other subfamilies of disparity tests, which are named the blended weight chi~squared
family BWCS(A) and the blended weight Hellinger distance family BWHIXA). Basu and Sarkar
(1994) derived the asymptotic chi-square distribution of the disparity tests, and showed that
the blended weight Hellinger distance family, like the power divergence statistics, is excellent
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compromise to any other goodness-of-fit statistics when BWHIX1/9) as well as BWCS(1/3)
under a multimonial distribution. Another subfamily of disparity tests is investigated by Jeong
and Sarkar (2000). This statistic is the negative exponential disparity test NEIXJ), whose
family includes the Pearson’s chi-square as a member. When A=4/3, the negative exponential
disparity test might be preferred to the power divergence statistics X2/3) based on a
multimonial model.

These disparity test statistics including the Pearson chi-square statistics X2, the log
likelihood ratio statistics G? the power divergence statistics 1(2/3), the blended weight
chi-squared statistics BWCS(1/3), the blended weight Hellinger distance statistics BWHI(1/9),
and the negative exponential disparity statistics NED(4/3) are introduced in Section 2. Many
authors have compared these goodness-of-fit test statistics. See, for example, Cochran (1952),
Hoeffding (1965), West and Kempthorne (1972), Chapman (1976), Lantz (1978), Koehler and
Lantz (1980), and Moore and Spruill (1975).

Lots of literatures mentioned above have been studied for multinomial models in order to
investigate behaviors of these goodness-of-fit test statistics. In this paper, 3xX3X3 categorical
data are generated by using simulation on each term in the log-linear model equation based
on partial association model. Numerical results for disparity statistics are compared and
discussed in Section 3. Finally the conclusions are given in Section 4.

2. Disparity Measures

Suppose the sample space is a countable set, without any losses of generality
X=1{0,1,...,K}, with K possibly infinite, and that m(x) is a family of probability densities
on X, indexed by A€ . To avoid technicalities, it will be assumed that m(x)>0 for all
xe X. Moreover, suppose that #n independent and identically distributed observations
Xi,....X, are made from mg(x). Let d(x) be the proportion of the # observations which had

value x. Define the Pearson residual function &(x) to be
Mx)=[d(x) —mgx)]/mgx) .

Note that the model-weighted sum of the squared residuals, ng(xi)S(x,-)z, is Pearson’s
chi-squared distance. And it is important to note that these residuals are not standardized to
have identical variances, so that these residuals have range [—1,].

Suppose that G(-) is a real-valued thrice-differentiable function on [—1,%0), with
G(0)=0. Lindsay (1994) defines the disparity measure determined by G to be

o( d, mﬂ)=2m,9(x,') G(&(xy) . 4)
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If G is assumed to be strictly convex, then Csiszar (1963) shows that the disparity measure
is nonnegative, and is zero only when d = mj; by Jensen’s inequality. An important class
of such measures is the Cressie-Read [Cressie and Read (1984), Read and Cressie (1988)]
family of power divergence measures, defined by

{ [d(%i)/m,sx(é’«fi)]/1 -1}

1) = 2d(x) AG+1)
_ {1+ x*" ' ~1}
For A= —2, —1, —0.5,0, and 1, one obtains the well-known measures: Neyman chi-squared

measure divided by 2, Kullback-Leibler divergence measure, the twice-squared Hellinger
measure, the likelihood disparity, Pearson chi-squared measure divided by 2, respectively.
Cressie and Read (1994) suggest that a member of this class, [(2/3), could be used as a good
alternative to any other measures.

For A any fixed number in [0,1] and A=1—4, Lindsay (1994) introduces two modified
distance measures. One is the blended weight chi-squared disparity which is defined as

[d(x) — mg(x)]?
202d(x) + Amg(x))]

BWCS() =2

Here Pearson chi-squared measure corresponds to A=0 and Neyman’s corresponds to A=1.
Le Cam (1986, page 47) considered the case A=0.5, showing that it is squared distance
satisfying the triangle inequality. The other weighting scheme that generalizes Hellinger
distance is the blended weight Hellinger distance measure such as

{d(x,')_ 7113(.961‘)]2
2[4V d(x)+ AV my(x)])?

BWHD() =2,

This family includes Neyman chi-squared measure, Pearson chi-squared measure, and
Hellinger distance for A=1, 0, and 0.5, respectively. Jeong and Sarkar (2000) propose the
generalized negative exponential disparity family as the following:

NED() =3 exe] -4 (%—1)2]'1+*( ;Zifé)f) -1
A

mﬂ(xi) .

This family includes Pearson chi-squared measure and the negative exponential disparity
introduced by Lindsay (1994) for A=0 and 1, respectively. Basu and Sarkar (1994) show that



Empirical Comparisons of Disparity Measures for Partial 139
Association Models in Three Dimensional Contingency Tables

the blended weighted Hellinger distance statistic and the blended weighted chi-square statistic
are excellent compromise to any other goodness-of-fit statistics when BWHD(1/9) and
BWCS(1/3). Jeong and Sarkar (2000) derive that the negative exponential disparity statistic,
NED(2), might be preferred to the power divergence statistics 1(2/3) when A=4/3.

For a sequence of n observations on a multinomial distribution with probability vector

x=(m, .., 7)) and gln,:l, let pg( d, 1) be a disparity measure defined in (4). Then

consider D,;=2nps( d, x) as a test statistic for the simple null hypothesis Hy: 7= =,
T >0 for all i. Basu and Sarkar (1994) show that the disparity test statistic D,; has an

asymptotic chi-squared distribution with %—1 degrees of freedom, %%4-1, under the null
(k—-1)

hypothesis.
3. Numerical investigation

Many authors including Cochran (1952), Hoeffding (1965), West and Kempthorne (1972),
Chapman (1976), Lantz (1978), Koehler and Lantz (1980), and Moore and Spruill (1975) worked
to compare behaviors of a lot of goodness—of-fit test statistics for multinomial models. In this
paper 3x3x3 contingency tables are considered. These categorical data are generated by
using the log-linear model. Values of eighteen wu terms {u 1), %2(), U3k, % 126> % 13()» % 2Gik) 5
i,j,k=1,2} in the partial association model in (1) are simulated from the uniform distribution
having appropriate intervals. The rest # terms are obtained satisfying usual restriction on

terms such as @ =—(um+ u1n), wapy=—(UsT %2 )s or  Uzan="(wmant uzw), -
and for each 4,7,k (=1,23), cell counts x;(=1) satisfying H, are calculated by the

following equation

exp (i) + wayt usn+ a0+ wiant Uzin)
;k exp (uy(y + Uan+ Uant Uizt Uisin T Unie)

X ijg=

where N is a sample size. Fienberg (1979) suggested that the sample size might be as small

as 4 or 5 times the total number of cells of the table, so that cell counts x ; are obtained

with sample sizes 50, 70, 100 and 200. Then estimates of expected counts { mg)} are obtained
using iterative proportional fitting method (see Bishop, Fienberg, and Holland, 1975 for more
detail). Note that d(xz) = xa/N and mgxz) = mu/N in (4).

Independent random samples were obtained 1,000 times for the partial association log-linear
model. We explore behaviors of disparity test statistics discussed in Section 2. For each

simulation, disparity statistics I(2/3), X2, G% BWCS(1/3), BWHD(1/9) and NED(4/3)
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computed for testing H,. The empirical levels of significance attained, viz. ?r, were computed
as the proportion of times the values of test statistics exceed the asymptotic critical value
15, for the nominal values @=0.05, 0.01 with degrees of freedom v=(I—1)(J—1}K—1) =8.
The values of @ are given in [Table I and II] for the nominal values @=0.05, and 0.01,

respectively, satisfying the partial association model.

[Table 1] Empirical levels for 1(2/3), Xz, G2, BWCS(1/3),
BWHD(1/9) and NED(4/3) statistics at a=0.05 for testing [12][13](23].

Sample size (N)

Statistics 200
I(2/3)
Xt 49 101 117 67
G? 3 9 20 38
BWCS(1/3)
BWHD(1/9)
NED(4/3) 0 1 11 27

[Table 1] Empirical levels for K(2/3), X% G? BWCS(1/3),
BWHD(1/9) and NED(4/3) statistics at a=0.01 for testing [12][13][23].

L. Sample size (V)
Statistics i 200

BWCS(1/3)
BWHD(1/9)
NED(4/3)

In this work all theses statistics perform more or less the same for large samples. For
moderate samples, the statistics X(2/3) and BWHD(1/9) attain quite close levels to the
nominal values @=0.05 and 0.01, whereas X2, G2 BWCS(1/3) and NED(4/3) statistics do
not perform well. Among them the statistic X % rejects much more often than expected. The
statistics G?, BWCS(1/3) and NED(4/3) seem to work very poorly compared to any other
statistics considered in our study.
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We also study the power of the disparity test statistics. Since the partial association
log-linear model ([12][13]1[23]) nests the conditional independent log-linear model (say, [12][13]
or [12)(23] or [13][23]), which nests the collapsible log-linear model (say, [12][3] or [13][2] or
[1][23)), it notes that one regards the null hypotheses with a conditional independerﬁ log-linear
model ([12)[13]) and a collapsible log-linear model ([121{3]), respectively, as follows :

[12](13] : Inmg= u+ uy)+ uyy+ usn+ ot “izw
[12)[3] : Inmg=u+ uy+ uyyt+ uswn+ i

The empirical powers of the disparity statistics which simulate for samples of size 50, 70, 100
and 200 to test the [12)[13] model and the [121[3] model against the [12][13][23] model are
listed in [Table IM] and [Table IV], respectively. These tables indicate that for the nominal
values a=0.05, 0.01 with degrees of freedom IKJ/—1}XK—-1)=12 and (J—-1)}K—1)=16,

respectively, the empirical powers which are the values of test statistics exceed the
asymptotic critical value x%,,a for the nominal values.

From [Table I and IV], the powers of all theses statistics perform more or less the same
for large samples. For moderate samples, the statistics X(2/3) and BWHD(1/9) attain similar
powers. We might say that whereas the statistic X 2 is over-powered, the statistic G?,
BWCS(1/3) and NED(4/3)is under-powered than the statistics X(2/3) and BWHD(1/9).
These investigations are consistent with the conclusions induced from [Table I and II]. One
also found that the powers in [Table IV] are more likely than those of [Table II], since the
null model ([12][3]) for [Table IV] is nested by the null model ([12][13]) for [Table I]. Since
the completely independent model ([11[2][3]) is nested by [12][3], the empirical powers of the
disparity statistics to test [1][2][3] against [12][13][23] have much larger than those of [Table
IV]. Therefore the empirical powers of the disparity statistics to test [1][2][3] are not
described in this paper.

4. Conclusion

We investigate in this work that the Cressie-Read’s power divergence statistic X(2/3) and
the blended weight Hellinger distance family BWHIX1/9) attain almost close levels that are
very close to the nominal values and have similar powers. It is,found that the statistic X2
gets larger values than those empirical levels of K2/3) and BWHIX1/9) and its powers are
larger than those of I(2/3) and BWHI(1/9) whereas the statistics G? BWCS(1/3) and
NED(4/3) obtain less levels and its powers are smaller than those of X2/3) and BWHIX1/9).
Based on these facts the Cressie-Read’s power divergence statistic 1(2/3) and the blended
weight Hellinger distance family BWHD(1/9) are the best tests with respect to size and power
for testing the partial association model.
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[Table M) Empirical powers for K2/3), X2, G2, BWCS(1/3),
BWHD(1/9) and NED(4/3) statistics at ¢=0.05, and 0.01 for testing
[12][13] against [12](13](23].

Statistics Sample size (N)

50 70 100 200

233 203 550 792

12/3) (103) (254) 377) 659)
2 363 530 652 809
X 171) (363) 456) 668)
2 143 273 478 780
G @&7) (170) (317) (655)
121 203 428 756

BWCS(1/3) ©67) (130) (269) 618)
227 393 552 792

BWHDA/9) (109 (246) (375) (659)
NEDUIS) 109 168 390 746
(60) (114) (250) (606)

*The lower figures in parentheses refer to a=0.01

[Table IV] Empirical powers for I(2/3), X2 G2 BWCS(1/3),
BWHD(1/9) and NED(4/3) statistics at @=0.05, and 0.01 for testing
[12][3] against [12][131[23].

Sample size (N)

Statistics 50 70 100 200
626 811 924 987

12/3) (443) (708) ®35) (974
2 716 856 939 988
X (527) (763) (864) (975)
575 761 902 986

G* 412) (647) (807) 972)
475 690 867 984

BwCSQ/3) (328) (548) (752) (968)
625 808 921 987

BWHD(1/9) (440) (701) (834) (974)
NED@S) 439 648 834 980
312) (497) (719) (967)

*The lower figures in parentheses refer to a=0.01
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