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ABSTRACT

In Part 2 of this paper, the dynamic cutting force model, thermal behavior model, and feed drive model used in the
development of a virtual machine tool (VMT) are briefly described. Some results are presented to verify the proposed
models. Experimental data agreed well with the predicted results for each model. A comprehensive software
environment to integrate the models into a VMT is also proposed.
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1. Introduction

The role of CAE technology has been rapidly
increasing in almost every industry. ADAMS and DADS
are widely used for vehicle kinetic analysis, ANSYS and
IDEAS are structure analysis tools that are based on
FEM, and CMOLD and MOLDFLOW are application
software packages that were developed to analyze plastic
injection molding. However, an analysis tool for metal
cutting is still not available, even though one could be
used to optimize the cutting process. Existing CAM
software is not able to evaluate cutting forces, machined
surfaces, and machining stability.

Until now, many researchers have concentrated on
the development of individual models, but since various
complex phenomena influence the machining process,
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machining error should be estimated using an integrated
approach that includes a cutting process model and
separate models for each part of the machine tool.
Furthermore, a compensation/control module is required
to reduce machining error.!

The structure of the virtual machine tool (VMT)
presented in this paper is shown in Fig. 1. The cutting
process module examines the machining state beforchand
and supplies the proper cutting conditions to the operator.
The compensation/control module is composed of a
thermal behavior model and an adaptive control model. It
compensates and controls the machining process to
improve the accuracy and productivity of the machine
tool. Additional
incorporated into the VMT.

The concept and structure of the VMT was presented
in Part 1 of this paper. The cutting process module was
considered, which includes the mechanistic cutting force
model, machined surface error model, and off-line feed
rate scheduling model? Part 2 of this paper considers the

modules may be continuously
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dynamic cutting force model, thermal behavior model,
and feed drive system model, and proposes the software
that is needed to integrate the models into a VMT.
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Fig. 1 Structure of the VMT

2. Dynamic Cutting Force Model

As the cutter rotates during endmilling, cutting
configurations change periodically; uncut chip thickness
changes continuously as the multi-point tool rotates and
makes interrupted cuts. The dynamic cutting force model
simulates the dynamic component of the cutting force by
evaluating the relative displacement between the tool and
the workpiece that is caused by vibrations resulting from
variations in chip thickfless.’

The cutting system model was developed first, based
on structural dynamics and the cutting force model.
Relative motion of the tool occurs as the cutting force is
applied during NC machining, and this results in
variations in the cutting force, which subsequently
influence the relative motion. The relative motion of the
tool can be calculated by numerical integration using the
fourth-order Runge-Kutta method.*

The dynamic cutting force model is used to estimate
machining  stability machinability.
Machining stability involves detecting chatter using

and evaluate
computer simulation, whereas machinability is an
estimate of machining deficiency, such as surface
deterioration generated by excessive relative movements
of the tool. Most research into the occurrence of chatter

%)

uses the Lobe diagram to avoid excessive cutting
conditions. However, in the transient case of corner
machining, chatter may occur at lighter
conditions than those indicated by the Lobe diagram.’

Thus, this paper examines chatter under changing cutting

cutting

conditions, and demonstrates the difference between the
stability of a transient (e.g., corner) cut and the stability
encountered during fixed cutting conditions.®

An experiment was performed to test the dynamic
cutting force model. A 20-mm diameter HSS tool was
used; the workpiece material was aluminum 2014-Té6.
Table 1 shows the cutting conditions for two cases.
Generally, the width of a cut increases during corner
machining and approaches the same width used in slot
cutting. Thus, two machining cases were selected to
compare the stability of transient and steady cuts.

Table 1 Cutting conditions

Cut type Width of cut
Case A Corner cut 10 mm - 20 mm
Case B Straight cut 20 mm
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Fig. 3 Measured straight path cutting forces for Case B
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Fig. 5 Predicted straight path cutting forces for Case B

Case A represents a cutting configuration in which
the width of the cut increases from 10 to 20 mm. Case B
is a slot-cutting state, in which the width of the cut is
fixed at 20 mm. Figure 2 shows the chatter measured in
Case A. Chatter did not occur in Case B (see Fig. 3).
Figures 4 and 5 show the predicted cutting forces for
Cases A and B, respectively. The predicted cutting forces
corresponded well with the measured values.

3. Thermal Behavior Model

The accuracy of machine tools is defined as the error
in the relative movement between the cutting tool and the
ideal workpiece. For a three-axis machine, this relative
error can vary widely across the machine working zone
due to the following effects: position errors, angular
errors of the machine linkage, time variant thermal
changes, tool run-out errors, and tool deflection errors.
Of these, thermal errors comprise between 40-70% of the
workpiece error in precision machining. Research has
been undertaken to minimize or control the thermal
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deformation of machine tools from various viewpoints.
These include modification of the machine design,
separation of the heat sources, cooling of the machine
structure, compensation for thermal error, and so on.
Empirical models are generally more effective than other
models when predicting thermal errors.” None of these
models, however, can accurately estimate thermal errors
during cutting. In the present research, a compact
measurement system was developed to measure time-
invariant machine-tool errors. A practical and reliable
method is proposed to estimate the thermally induced
errors of a machine tool during cutting by applying a
neural network approach.®’

To test the thermal behavior model, an experiment
was performed using a vertical machining center
(Daewoo Heavy Industries Ltd., ACE-V30). The error
prediction model was trained using the cutting conditions
and measurement cases. The
performance of the model was then verified by
estimating the thermal error of the machine tool for
another case using a neural network model.
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Fig. 6 Comparison between model estimates and
experimental results
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5. Integration of a Virtual Machine Tool and
Software Development

The entire operation of a VMT should be analyzed in
terms of the machined surface quality and cutting
performance. This paper proposes a cutting force model,
chatter prediction model, thermal behavior model, feed
drive system model, and machined surface prediction
model, which fulfill the requirements of a VMT.
Furthermore, additional models may be continuously
incorporated into the VMT.

The developed models can be used independently, or
together, according to the given machining conditions,
analysis target, and purpose. For example, adaptive
control can be used after off-line feed rate scheduling.
This application is important for high-performance tools
as a precaution against sudden disturbances and as a
technique to improve productivity.

The cutting force model, machined surface error
model, off-line feed rate scheduling model, and
machining state monitoring have been integrated into one
piece of software for a VMT. When the NC code and
machining information are provided to the sofiware, the
cuiting force and machined surface error can be predicted,
and an NC code with a scheduled feed rate can be
generated.

Figure 9 shows the software screen constructed for a
VMT. The left and right windows of the screen are used
to monitor the machining state and illustrate the cutting
forces and NC code, respectively. As an example, Fig. 10
illustrates a three-dimensional machined surface profile
for pocket machining.

Fig. 9 Main screen of the VMT software

‘Research Institute (MTAMRI) is

S

Fig. 10 Three-dimensional error map of a machined
surface (maximum error = 118 gm, minimum
error = 2 m)

6. Conclusion

A virtual machine tool can be used to analyze an
actual machine tool. The operator can improve the
productivity and accuracy of the actual tool by
experiencing “pseudo-real machining” and modifying the
cutting conditions. A novice operator can also use a
virtual machine tool to plan the machining process.
Furthermore, a tool designer can build a tool structure,
controller, or compensator by estimating machining error
components separately or synthetically.

~ To date, the individual models in the virtual machine
tool have been developed separately, and have been
shown to perform well. In the future, an improved
system for integrating the developed models will be
constructed that is expected to offer the means to achieve
higher precision and accuracy than can be attained using
conventional techniques.
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