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ABSTRACT

Compensation of probe radius is required for accurate measurement in metal working industry. Compensation
involves correctly measuring data on the surface in the amount of radius of the touch probe with a Coordinate Measuring
Machine (CMM). Mechanical parts with free-formed curves and surfaces are complex enough so that accurate
measurement and compensation are indispensable. This paper presents necessary algorithms involved in the
compensation of the probe radius for free-formed curves and surfaces. Application of pillar curve is the focus for the

compensation.
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1. Intreduction

According to Kim ! measurement with a Coordinate
Measuring Machine (CMM) informs users of the

position of the probe center when it contacts work-pieces.

The radius of the probe is of the same length as the
distance from the center of the probe to the touch point.
Lee 2 identifies that it is necessary to compensate for the
probe radius when data are measured. According to
ANSI-CAM-I 3, the direction of the vector from contact
point to the probe center is of the same direction as the
normal vector of a measuring point on a surface, which
however, is not known. This research presents the
procedure to identify the method of finding the normal
vector for the compensation of the probe radius.

B-spline can be found in Shi * and Choi °. Least
square According to Li ®, B-spline fitting for free-formed
curves and surfaces are used for the compensation. One
of the properties of B-spline is that it is differentiable in
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the parameter segment between knot points, and (k-r)
degree differentiable on the knots, that is, C*" — (k-r)
parameter continuity. Here k is the degree of B-spline,
and the r is the multiplicity of knots. In the reverse
calculation of B-spline, especially in application to
metrology, the r is equal to 1. In general, a cubic B-
Spline is the most commonly used, i.e. k is equal to 3. In
other words, even at the knot points, the second partial
derivatives can be calculated. As it is known, the first
partial derivatives are the tangent vectors homologous to
the relative parameter direction, which is perpendicular
to normal the vector of the surface. Figure 1 shows a
normal vector and tangent vectors on the point of a
surface.

Fig. 1 Normal vector & tangent vector
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This property shows an idea to compensate for the
probe radius on free-formed curves and surfaces. The
locus of probe center in measuring the free-formed
surface or curve is different from the one in measuring a
convex shape or a convex curve. Examples of convex
ones are spheres, cylinders, cones planes, circles, and
lines. Their locus is off as much as probe radius to the
than their Thus, the
modification of tangent vectors should be made for

normal direction surface.
accurate calculation of a normal vector. In such cases,
Xiong 7 calculates Hesse matrix that is a second partial
derivatives matrix is to be calculated. Even in this
situation, the Cubic B-spline curve or bi-cubic B-spline
surface where r is equal to 1 satisfies the requirements of

differentiation.
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Fig. 2 Vectors in a pillar curve and cam

Pillar curve is a special type of spatial curve, which
lies on a cylinder surface. When the pillar curve cannot
be expressed with a definite mathematical expression, it
belongs to a free curve. The pillar cam is a typical
application of a spatial curve. The pillar cam has an
angular contour, which is shown in Figure 2. Since the
depth of contour in the cam is too narrow to be measured,
special should be into for
compensation of the probe radius for measuring pillar

consideration taken

curves.
Since every direction vector must be a unit vector, its

magnitude should be 1. That is a/p2+q2+r2 =1,

where (p, g, 1) is the components of a unit vector or
simply p*> +¢> +r2=1.
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2. B-Spline and its Tangent Vectors

2.1 Curve
B-spline curve is expressed by the following
equation:

P) = 24Ny () M

where d,,i =01, nare control vertices, or de Boor
points; N, (u),i=0,1,,n are k degree standard B-
spline basis functions. P(u) is the point on the curve,
which is determined by the parameter value u. The de
Boor recursive formula can be found in Shi * and it is re-
written in the following equation:

Pu)= Zi:dj’.Nj'k,,(u) == a’f

Jei—k+
d, 1=0
d' = . 1=12,,k
IT(1-al)dl +ald!?
(=) +ayd; ji—k+leei
] U—u;
a;= z
Ujrkri —U;

(¢))

where u with a subscript is a knot point in the parameter
domain and u without a subscript is the parameter value
in i-th segment. The point on the curve can be expressed
as a function of the parameter
uelu,u,)cu,u,, ]

Suppose the B-spline is formulated in equation (2)
with data points. With the similar de Boor formula in
Piegl 8

i

p(r)(u)— d;Nj,ifr(u) ue[ui9u,‘+1]
J=i-k+r
df 1=0
! _ dI-l_d1~1 1—12,-
dj—(k-l-i‘l)j—J_l . T” » .
Ujigor-r —U; J=i—k+1,--i

3

From the above equation we can calculate the r
degree derivative vectors of the B-spline curve. For
compensation of a probe radius, only derivative vectors
on knot points are utilized for calculation.
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2.2 Surface

The control vertices of a B-spline surface lie on a
control grid, topologically homologous to the rectangular
matrix of a data point, instead of the control polygon in
curve fitting. It is expressed as

P(u,v) = mfl (’fd,., N (DN, () “)
=0 j=0

When fixing either v or u, we can calculate the partial
derivatives P (y,v) and P(")(y,v) , respectively.
The first partial derivatives are the tangent vectors T, and
T, in Figure 1. The normal vector of a free surface can be
calculated if the surface is fitted. The normal vector is
the vector product of T, and T,

N =T, xT, )
3. Planar Curve

However, for any curve in equation (1), only one
tangent vector can be obtained on every data point. In
order to get the normal vector of the curve, another
vector that is perpendicular both to the normal vector and
the tangent vector is required. With a Frenet moving
frame in Farin ° that is a local coordinate sub-system, it
becomes easier to constructing this vector. The origin of
the frame is located at the current point on the curve and
the coordinate axes are the unit vector T, V and B, which
are perpendicular to one another. When a parameter
continuously changes, this sub-coordinate should
continuously translate and/or rotate. The T, NV and B are
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Fig. 3 Frenet moving frame

the tangent vector, normal vector and bi-normal vector
on the current point of the curve, respectively. They are
shown in Figure 3. In a right-handed system, the
following equation for vector product is satisfied as
follows:

N=BxT (6)

For planar curves, B is the normal vector of the plane
on which the curve lies. T is the tangent vector calculated
according to equation (3) when the r is equal to 1. This is
shown in Figure 4.

Fig. 4 Compensation on a planar curve

In Figure 4, suppose that there is another vector §
which is pointing from a contact point to one point
outside the body. The outside point is the pseudo point
that can be sampled in the air (not on the measured
surface). The scalar @ is calculated as :

a=BxTeS %)

If @ >0, the angle & between the S and N is smaller
than 90° ; otherwise larger than 90° . One assumption is
that we look at the curve from the top of the arrow B, if
0 < 90° , the probe is located on the left hand side of the
curve; otherwise it is on the right side of the curve. This
research sets the following equations for directional

position.
f=-1, a<o0

The physical meaning of equation (8) is that if the
direction of the normal vector N calculated from
equation (6) does not point outward from the real body,
the direction of the vector is reversed. The contact point
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is calculated from the center of the probe according to
the following equation:

P

contact™ p probe

~f*r*N ©

where the r is the radius of the probe. Mortenson '°

shows that if the curve is not self-intersected, only one
judgment from equation (7) and (8) is required for
examining the curve.

4. Pillar Curve with Angular Contour

4.1 Convention

In Figure 2 the following notations are used to
identify the problem:

T tangent vector of a point;

A: axis vector of the cylinder;

B: bi-normal vector, indicating the inclination of the
angular contour;

C: center line of cutting tool or symmetry line of
both sides of the groove in a normal section;

N: normal vector of a point.

The vectors B, C and N are located in the plane
perpendicular to vector T. Vector C is perpendicular to
vector 4 and ¥ is the angle between vector B and C. The
direction of this angle is defined from vector C to vector
B. The normal width of the groove on the cylindrical
surface is wider than the bottom shown in Figure 2. The
direction of vectors € and B must point outward from the
axis of cylinder.

4.2 Vector relationship

Because CL A and C_L T, the following equation is
satisfied:

C=TxA (10)

If C does not point outward from the axis, its
direction should be reversed. The relationship between
vectors C, B and 4 are not changed as long as the
measuring path remains in one direction without being
reversed. Thus only one confirmation is required for a
whole path of measurement. It could be on the first or the
last point. To keep this relationship constant, if the
direction of C is reversed at the first point, A must be
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also reversed. The C vector is normalized, its
components are (p., 4., *.). Because B and C are located
in the plane perpendicular to T, the following equation is
satisfied:

T=CxB (11)
4.3 Calculation of the vectors

Equation (10) is transformed into the following form.

p siny =gq.1r, —q,r, (12)
q,8iny =t.p, —r,p. (13)
rI Sin}’ = pcqb _pch (14)

Since only two equations of (12), (13) and (14) are
linearly independent of each other, an additional equation
in the following form is required.

as)

2 2 2
Py +t4q; +r, =1

For example, (p,, g¢,, r,)can be derived with the

following formula by combining equations (12), (13) and

(15):

n, =(q,p, —q, p.)sity

i\/[qcpt _Qtpc)z—[pt2+Qz2)lSiIf7+ rc2
(16)
(r, +q, sity)
pb= bpc rqt d
[
_(n9. — p,siy)
q, = -
(o4

The two equations that produce maximum absolute
value for ( p,, q., r) should be selected from
equations (12), (13), and (14) in order to avoid dividing
by zero or reducing accuracy in calculation.

The sign, * , in front of the square root in equation
(16) should be selected according to the sign of 7, . That
is, we select positive sign if 7, > 0, and negative
otherwise. Normally the angle between C and B is quite
small. The scalar product of vector C and B thus must be
positive.

Similarly to the case of the planar curve, we set a
pseudo point outside the physical body and near the first
point. Vector S is constructed from the first contact point
to this pseudo point. The scalar a is calculated according
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to equation (7). However during the procedure of
determining, sin ¥ , the bi-normal vector B is unknown.
We therefore calculate the scalar @ with the following
equation instead of equation (7).

a=CxTeS a7

Similarly, we look at the curve from the top of the bi-
normal vector B. If & >0, then the probe is located on
the left hand side of the curve. Otherwise, it is on the
right side of the curve. Equations (8) and (9) are also
applied to pillar curves.

Equation (16) means the rotation of C with angle of
¥ degrees around T to obtain the bi-normal vector B, of
with the rotating direction not known. Because the
normal width of the groove is always wider on the
cylindrical surface than at the bottom, as shown in Figure
2, the angular contour must be rotated l}/[ degrees inside
the cylindrical body. This is the same principle as the one
used in compensation of the probe radius. Equation (16)
is rewritten in the following form:

n,=fq.p, —q,p. )sity

+la. P -9, p.) ~ (P +alsid y +1.° (18)
_ (P, +4,f i)

T

Ps

_{na. ~pSf siy)

T

U

The physical meaning of such change is rotating C
by J degrees around T in the counter-clockwise
direction to get the bi-normal vector B. It is seen from
the top of the bi-normal vector B, and vector § faces to
the direction of vector N. Otherwise, C must be rotated
clockwise.

4.4 Procedure for compensation

The following paragraph contains the procedural
steps for the compensation of the probe radius.

1) Input the axis vector 4 via keyboard or measure it
on the work piece.

2) Input rotating angle } via keyboard or measure it
on the work piece.

3) Sample data along the curve.

4) Fit them into B-spline utilizing equation (2) and (3).
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5) Calculate the rth derivatives with the data points
measured.

6) Construct vector § by sampling a pseudo point
near the first or the last point automatically with a
measuring machine.

7) Construct vector C perpendicularly to vector A4
through each measured point.

8) Calculate scalar a and determine f from equation
(17) and (8).

9) Identify an applicable equation according to the
value of (p,, q., r.) and calculate (p;, g3, 73)-

10) Calculate the normal vector (p,, ¢, r,) through
equation (6).

11) Calculate the components of compensation with
equation (9).

The procedure for the compensation of a probe
radius for pillar curves requires some more notable

consideration in real application. The following
paragraph is an additional statement about that
compensation.

4.5 Path for compensation

In measuring a pillar curve, we sample data from a
definite distant on the axis of cylinder. For example it
can be on the mid diameter. In this way, all data points
are located on an identical cylinder. But after being
compensated through equation (9), the contact points are
not in the identical cylinder anymore since the normal
vector NV changes its direction at a different position. This
is shown in Figure 5. It is better to have the axis vector 4
be a measuring path instead of the normal vector N.

P contact

P con}lp\\

Fig. 5 Compensation along the A vector
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In Figure 5 R is the distance from the measuring
point to the axis of the cylinder. Equation (9) is rewritten
in the following form:

P L*A

robe
i V1-cos a

where « is the angle between vectors A and N. It can be
calculated via the dot product of vectors 4 and N, i.e.,

P (19)

comp =

€CoSx = P, Pr 9.9, + Taln (20)

5. Simulation Test

This research constructs a pillar curve in the
following equations for a simulation test:

x =30 cos a
, aclo, 7 @1)
Yy =30 sinca

z =22 1,
V.4

This is a spiral curve with a radius of 30 and its lead is 50.

The angle of the angular contour ¥ is 7.5°. The radius
of the probe is 2 and the axis vector 4 is (0, 0, 1).

Total data measured is 40 points (0-39th), and they
are fitted with a pillar B-spline. Compensation of the
probe radius is conducted along the axis that is parallel to
the A axis and along the normal vector respectively. 37
points (from Oth to 36th) are uniformly interpolated,
5° of angular distance between adjacent points. They are
fitted with least square spirals. The independent variable
is the angle between interpolated points and the first
point. The dependent variable is the height z of
interpolated points from the first point. The final result
compensated along the axis vector is
z=7.957747*a +99.9130 . When the & is replaced
with 277, z becomes 50, which is the lead length. The
constant 99.9130 is just the height of the first point after
conducting the compensation of probe radius, which
includes the noise of influence of both the tangent vector
and the angular contour ¥. The maximum and minimum
residual errors arc less than 1x 107 and the standard
error of residual errors is 3.3x 10°. The residual error,
which evaluates the quality of regression or best fitting,

is the error between measured data and the regressive
curve. The distance from the interpolated points to the
axis is 30. This result means all considerations
mentioned above are suitable for a pillar curve with
angular contour fitting and probe radius compensation.
Compensation along the normal vector gets a similar
result. But the distances from the interpolated points to
the axis are not the same as the previous one.

The original data measured, control vertices, and
compensated data are listed in the appendix. From this
data we see following notable statement in order to
reduce influence of residual errors.

1) By combining the influences of angular contour
and the lead angle of the spiral curve, the angle between
the axis vector and the normal vector becomes 16.604 " .
This makes the value of compensation along the axis
vector 2.087 from equation (19).

2) From the uniformly interpolated data, the angular
distance and height between any adjacent points are
constant.

These two statements imply that the compensation is
correct. The spiral curve applied for simulation in the
previous paragraph is shown in a developed state in
Figure 6. This explains in more detail the relationship of
vector B to vector T and N.

Fig. 6 Developed spiral curve

6. Concluding Remarks

B-spline is a
interpolation. With the translated form of B-spline, the

recursive algorithm of linear

expression of free-formed curves and surfaces becomes
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easy. It makes the calculation fast and convergent. With
the expression of the B-spline, this paper introduces the
processing of surfaces and curves. Probe compensation is
an example of application in this area. This research
presents a procedural algorithm for the compensation of
a 3D probe radius. This research finds a normal vector
since we should know it for compensating a probe radius.
This paper takes a spiral curve for the simulation test and
shows the calculation with B-spline fitting is accurate.
From the simulation results (appendix) this paper
concludes that the algorithm presented reduces residual
errors by a notable amount.
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Appendix: Partially selected original data and simulation data

77

Original data Contr?ixgiiiiiiixfefore Compensated Data
(in part of 39 points) (in part of 41 points) (in part of 39 Points)

X Y Z X Y Z X Y z
30.0000 | 0.0000 | 102.0000 30.0000 0.0000 102.0000 30.0000 0.0000 99.9130
29.9954 | 0.5236 | 102.1389 29.9985 0.1745 102.0463 29.9954 0.5236 100.0519
29.8858 | 2.6147 102.6944 29.9953 1.0471 102.2777 29.8858 2.6147 100.6074
29.5442 | 5.2094 103.3889 29.8995 2.7911 102.7407 29.5442 5.2094 101.3019
28.9778 | 7.7646 | 104.0833 29.5822 5.2161 103.3889 28.9778 7.7646 101.9963
28.1908 | 10.2606 | 104.7778 29.0145 7.7744 104.0833 28.1908 10.2606 | 102.6908
27.1892 | 12.6785 | 105.4722 28.2266 10.2736 104.7778 27.1892 12.6785 | 103.3852
25.9808 | 15.0000 | 106.1667 27.2238 12.6946 105.4722 25.9808 15.0000 | 104.0796
24.5746 | 17.2073 | 106.8611 26.0138 15.0191 106.1667 24.5746 17.2073 | 104.7741
22.9813 { 19.2836 [ 107.5556 24.6058 17.2291 106.8611 22.9813 19.2836 | 105.4685
21.2132 | 21.2132 | 108.2500 23.0105 19.3081 107.5556 21.2132 21.2132 | 106.1630
19.2836 | 22.9813 | 108.9444 21.2401 21.2401 108.2500 19.2836 22.9813 | 106.8574
17.2073 | 24.5746 | 109.6389 19.3081 23.0105 108.9444 17.2073 24.5746 | 107.5519
15.0000 | 25.9808 | 110.3333 17.2291 24.6058 109.6389 15.0000 25.9808 108.2463
12.6785 | 27.1892 { 111.0278 15.0191 26.0138 110.3333 12.6785 27.1892 | 108.9408

Control verticgs after Interpolated Data

. compensatlon. (in part of 37 Points)

(in part of 41 points)

X Y ¥4 X Y Z
30.0000 0.0000 99.9130 30.0000 0.00600 99.9130
29.9985 0.1745 99.9593 29.8859 2.6143 100.6073
29.9953 1.0471 100.1907 | 29.5443 5.2091 101.3018
29.8995 2.7911 100.6537 | 28.9779 7.7643 101.9962
29.5822 5.2161 101.3019 | 28.1909 | 10.2603 | 102.6907
29.0145 7.7744 101.9963 | 27.1893 | 12.6783 | 103.3851
28.2266 10.2736 | 102.6908 | 25.9809 | 14.9998 | 104.0796
27.2238 12.6946 | 103.3852 | 24.5747 17.2071 | 104.7740
26.0138 15.0191 | 104.0796 | 22.9815 | 19.2835 | 105.4685
24.6058 17.2291 { 104.7741 | 21.2133 | 21.2131 | 106.1629
23.0105 19.3081 | 105.4685 | 19.2838 | 22.9812 | 106.8574
21.2401 21.2401 | 106.1630 | 17.2074 | 24.5745 | 107.5518
19.3081 23.0105 | 106.8574 | 15.0001 | 25.9807 | 108.2463
17.2291 24.6058 | 107.5519 | 12.6786 | 27.1892 | 108.9407
15.0191 26.0138 | 108.2463 | 10.2607 | 28.1908 | 109.6352




