Prediction of Temporal Variation of Son Concentrations in Rainwater

산성비 모델을 이용한 시간별 강우성분 예측

  • Published : 2003.04.01

Abstract

A one dimensional time dependent acid rain model considering size distribution of aerosols and hydrometeors is developed to predict observed chemical and physical properties of precipitation. Temporal variations of anions and cations observed are predicted fairly well with acid rain model simulations. It is found that aerosol depletion rates are highly dependent on aerosol sizes under the assumption of Marshall - Palmer raindrop size distribution. Also, the aerosol depletion during the initial rain event largely influences on ion concentrations in rainwaters.

Keywords

References

  1. J. KAPRA v.6 no.2 액체상 입자의 크기 분포를 고려한 일차원 적운 모델의 개발에 관한 연구 곽노혁;김이호;홍민선
  2. J. KAPRA v.7 no.3 일차원 적운모델을 이용한 산성강우 형성에 관한 수치적 연구 곽노혁;안상욱;홍민선
  3. J. KOSAE v.17 no.1 필터팩을 이용한 서울과 춘천, 안면도의 건성 강하량 추정 김만구;강미희;홍영민;박기준;이보경;이동수;김산
  4. J. KOSAE v.17 no.1 서울 도심 중 H₂O₂농도와 분포특성 강충민;김희강
  5. J. KOSAE v.15 no.1 대기에어로졸 입자의 이론적 강수세정에 관한 연구 박정호;최금찬
  6. J. KOSAE v.15 no.4 목포, 여천지역 강수의 무기이온 성분농도와 거동에 관한 연구 오길영;양인수;이완진
  7. J. KAPRA v.14 no.4 부산시 일부지역에 대한 초기 및 후속강우의 이온성분 특성 최금찬;김창환;조정구;박정호
  8. 환경부 보고서 지구규모 대기환경 기초 및 기반기술-산성비 감시 및 예측 기술 개발 환경부
  9. Atmos. Environ. v.33 Anthropogenic $NO_{x}$ emissions in Asia in the period 1990-2020 Aardenne,J.A.;G.R.Carmichael;H.Il.Levy;D.Streets;L.Hordijk https://doi.org/10.1016/S1352-2310(98)00110-1
  10. Atmos. Environ. v.31 no.10 Sulfur dioxide emissions and sectorial contributions to sulfur deposition in Asia Arndt,R.L.;G.R.Carmichael;D.G.Streets;N.Bhatti https://doi.org/10.1016/S1352-2310(96)00236-1
  11. J. Atmos. Sci. v.33 Terminal velocity and shape of cloud and precipitating drops aloft Beard,K.V. https://doi.org/10.1175/1520-0469(1976)033<0851:TVASOC>2.0.CO;2
  12. Atmos. Environ. v.12 Heterogeneous SO₂-oxidation in the droplet phase Beilke,S.;G.Gravenhorst https://doi.org/10.1016/0004-6981(78)90203-2
  13. Transport Phenomena Bird,R.B.;W.E.Steward;E.N.Lightfoot
  14. Environ. Sci. Technol. v.17 Calvert,J.G.;W.R.Stockwell https://doi.org/10.1021/es00115a002
  15. J. Geophys. Res. v.89 The photochemistry of a Remote Marine Stratifrom Cloud Chameides,W.L. https://doi.org/10.1029/JD089iD03p04739
  16. ACS Symposium Series v.416 Solubility of volatile electrolytes in multicomponent solutions with atmospheric applications Clegg,S.L.;P.Brimblecombe https://doi.org/10.1021/bk-1990-0416.ch005
  17. Report on the World Bank Sponsored Project "Acid Rain and Emission Reductions in Asia", December 1995 RAINS-ASIA: An Assesment Model for Air Pollution in Asia Foell(et al.)
  18. Gerlands Beitr. Geophys. v.52 The evaporation of falling drops Frossling,N.
  19. The Aqueous-Phase Chemistry, EPA/600/3-85/017 v.2 Chemical Transformation Modules for Eulerian Acid Rain Deposition Models Hoffman,M.R.;J.G.Clavert
  20. Atmos. Environ. v.20 An investigation of sulfate production in an orographic storm using a detailed transport/chemisty model coupled with a deiailed cloud scavenging model Hong,M.S.;G.R.Carmichael https://doi.org/10.1016/0004-6981(86)90340-9
  21. Atmos. Environ. v.20 Examination of a subgrid-scale parameterization for the transport of pollutants in a nonprecipitating cumulus cloud ensemble Hong,M.S.;G.R.Carmichael https://doi.org/10.1016/0004-6981(86)90312-4
  22. Fundamentals of Atmospheric Modeling Jacobson,M.Z.
  23. J. Atmos. Chem. v.10 Trace gas exchange at the air/water interface: Measurements of mass accmmodation coefficients Kirchner,W.;F.Welter;A.Bongartz;J.Kames;S.Schweighoefer;U.Schurath https://doi.org/10.1007/BF00115784
  24. Environ. Sci. Technol. v.17 Solubility of ozone in aqueous solutions of 0~0.6 M ionic Strength at 5~30˚C Kosak-Channing,L.E.;G.R.Helz
  25. Ph. D. Dissertation, Yale University Formation mechanisms of the stratospheric aerosol Kritz,M.A.
  26. J. Atmos. Chem. v.12 The role of clouds in tropospheric photochemistry Lelieveld,J.;P.J.Crutzen https://doi.org/10.1007/BF00048075
  27. J. Geophys. Res. v.99 Correction to 'Henry's law determination for aqueous solutions of hydrogen peroxide, methylhydroperoxide and peroxyacetic acid' Lind,J.A.;G.L.Kok https://doi.org/10.1029/94JD01155
  28. J. Atmos. Sci. v.39 Collision, coalescence and breakup of raindrops. Part Ⅰ: Experimentally established coalescence efficiencies and fragment size distribution in breakup Low,T.B.;R.List https://doi.org/10.1175/1520-0469(1982)039<1591:CCABOR>2.0.CO;2
  29. J. Meteorol. v.5 The distribution of raindrops with size Marshall,S.F.;M.W.M.Palmer https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
  30. J. Phys. Chem. v.87 Kinetics and mechanism of the oxidation of aquated sulfur dioxide by hydrogen peroxide at low pH McArdle,J.V.;M.R.Hoffmann https://doi.org/10.1021/j150644a024
  31. Gen. Board The interactions of gases with aqueous aerosol particles, central Electr. McElroy,W.J.
  32. J. Atmos. Chem. v.16 Mass transfer at the air/water interface: Mass accommodation coefficients of SO₂,HNO₃,NO₂ Ponche,J.L.;C.George;P.Mirabel https://doi.org/10.1007/BF00696620
  33. Chemistry of Multi-phase Atmospheric Systems, NATO ASI Series v.6 Mass transport considerations pertinent to aqueous phase reactions of gases in liquid water clouds Schwartz,S.E.;W.Jaeschke(ed.)
  34. Division of Biomedical Environmental Research Precipitation scavenging, in Atmospherc Science and Power Production-1979 Slinn,W.G.N.
  35. Inorganic Complexes v.4 Critical Stability Constants Smith,R.M.;A.E.Martell
  36. Atmos. Environ. v.34 Present and future emission of air pollutions in China: $SO_{2}, NO_{x}$, and Co Streets,D.G.;S.T.Waldhoff https://doi.org/10.1016/S1352-2310(99)00167-3
  37. NASA Tech. Publ.(TP) v.1362 The NASA-Ames Research Center stratospheric aerosol model: I. Physical processes and computational analogs Turco,R.P.;P.Hamill;O.B.Toon;R.C.Whitten;C.S.Kiang