DOI QR코드

DOI QR Code

A Comparative Study on Lowflow Quantiles Estimation in Han River Basin

한강유역의 확률갈수량 추정기법 비교연구

  • 김경덕 (한국시설안전기술공단 진단2본부 댐항만실) ;
  • 김돈수 (건설교통부 예산담당관) ;
  • 허준행 (연세대학교 사회환경시스템공학부) ;
  • 김규호 (한국건설기술연구원 수자원환경부)
  • Published : 2003.04.01

Abstract

Stream flow data was analyzed for determining the lowflow which is the standard for river maintenance flow. Lowflow quantiles were estimated based on the parametric and nonparametric methods and two methods were compared by Monte Carlo simulation study. As the results of the parametric method, three probability distributions such as gamma-2, lognormal-2 and Weibull-2, are selected as appropriate models for stream flow data of 13 stations in Han River Basins. According to simulation results, relative bias (RBIAS) and relative root mean square error (RRMSE) of the lowflow quantiles are the smallest when the applied and population models are the same. The fame statistical properties from the nonparametric models are good within the interpolation range. Among 7 bandwidth selectors used in this study, the RRMSEs of the Park and Marron method (PM) are the smallest while those of the Shoaler and Jones method (SJ) are the largest.

하천유지유량 설정에 최소한의 기준이 되는 갈수량을 결정하기 위하여 하천유량 자료를 검토하고 확률갈수량을 추정하였다. 확률갈수량은 모수적 방법과 비모수적 방법을 사용하여 산정하였으며, Monte Carlo 모의실험을 통하여 비교·분석하였다. 한강유역 13개 지점의 갈수량에 대한 빈도 해석을 실시한 결과, 유역 전체에 대한 확률분포 형은 3가지 분포형, 즉 2모수 gamma, 2모수 lognormal, 그리고 2모수 Weibull 분포가 한강 전지점의 주요 분포형으로 나타났다. 모집단과 같은 확률분포형의 상대편의와 상대평균제곱근오차가 가장 작게 나타났으며, 내삽범 위에서 비모수적 방법이 통계적 거동특성(상대편의와 상대평균제곱근오차)이 좋은 것으로 나타났다. RRMSE에 있어서 비모수적 방법중에서 PM 기법이 가장 작게 나타났으며, SJ 기법이 비모수적 방법 가운데 가장 크게 나타났다.

Keywords

References

  1. 건설교통부 서울지방국토관리청 (1998). 하천유지유량 산정, 한강수계 하천수 사용실태조사 및 하천유지유량 산정보고서
  2. 김돈수 (2001). 갈수량의 초과확률 추정방안에 관한 연구, 석사학위논문, 연세대학교 산업대학원
  3. 허준행, 김경덕 (2000). 'Smoothing 기법과 모수 방법을 이용한 확률홍수량의 불확실성 해석(II).', 대한토목학회논문집, 제20권, 제6-B호, pp. 813-819
  4. 윤용남, 김중훈, 김태균, 호정석 (1995). '빈도분석을 이용한 갈수량 및 '94 가뭄평가', '95 대한토목학회 학술발표회논문집, pp. 228-231
  5. 허준행, 김경덕, 조원철, 심병섭 (1997). '우리 나라 주요지점 저유량의 빈도해석에 관한 연구.', 대한토목학회논문집, 제17권, 제II-3호, pp. 207-215
  6. Adamowski, K. (1996). 'Nonparametric estimation of low-flow frequencies.', Journal of Hydraulic Engineering, Vol. 122, No. 1, pp. 46-49 https://doi.org/10.1061/(ASCE)0733-9429(1996)122:1(46)
  7. Bowman, A (1984). ''An alternative method of cross-validation for the smoothing of density estimates.', Biometrika, Vol. 71, pp. 353-360 https://doi.org/10.1093/biomet/71.2.353
  8. Frick, D., Bode, D., and Salas, J. D. (1990). 'Effect of drought on urban water supplies. I : Drought Analysis.', Journal of Hydraulic Engineering, ASCE, Vol. 116, No. 6, pp. 733-753 https://doi.org/10.1061/(ASCE)0733-9429(1990)116:6(733)
  9. Guerrero, P. and Yevjevich, V. (1975). 'Analysis of drought characteristics by the theory of runs.', Hydrology Paper, No. 80
  10. Gupta, V. K and Duckstein, L. (1975). 'A Stochastic analysis of extreme droughts.', Water Resources Research, Vol. 11, No. 2, pp. 221-228 https://doi.org/10.1029/WR011i002p00221
  11. Hosking, J. R (1986). 77k Theory of Probability Weighted Moments, IBM T. J. Watson Research Center
  12. Hosking, J. R and Wallis, J. R (1986). Regional Frequency Analysis - An Approach Based on L-Moments, Cambridge University Press
  13. Handle, W. (1991). Smoothing Techniques with Implementation in S, Springer-Verlag, New York
  14. Jones, M C, Marron, J. S., and Park, B. U. (1991). 'A simple root n bandwidth selector.', Annals of Statistics, Vol. 19, pp. 1919-1932 https://doi.org/10.1214/aos/1176348378
  15. Kim, K D. and Heo, J. H. (2002). 'Comparative Study of Flood Quantiles Estimation by Nonparametric Models.', Journal of Hydrology, Vol. 260/1-4, pp. 176-193 https://doi.org/10.1016/S0022-1694(01)00613-8
  16. Mallan, J. and Yevjevich, V. (1971). 'Probabilities of observed droughts.', Hydrology Paper, No. 50, Colorado State University, Fort Collins, Colorado
  17. Marron, J. S. and Wand, M P. (1992). 'Exact mean integrated squared errors.', Annals of Statistics, Vol. 20, pp. 712-736 https://doi.org/10.1214/aos/1176348653
  18. Matalas, N. C. (1963). 'Probability distribution of low flows.', USGS Professional Paper, No. 434-A
  19. Park, B. U. and Marron, J. S. (1990). 'Comparison of data driven bandwidth selectors.', Journal of the American Statistical Association, Vol. 85, pp. 66-72 https://doi.org/10.2307/2289526
  20. Saldarriaga, J. and Yevjevich, V. (1970). 'Applications of run-lengths to hydrologic series.', Hydrology Paper, No. 40, Colorado State University, Fort Collins, Colorado
  21. Scott, D. W. and Terrell, G. R (1987). 'Biased and unbiased cross-validation in density estimation.', Journal of the American Statistical Association, Vol. 82, pp. 1131-1146 https://doi.org/10.2307/2289391
  22. Sen, Z. (1980). 'Regional drought and flood frequency anaylsis : Theoretical consideration.', Journal of Hydrology, Vol. 46, No. 3/4, pp. 265-279 https://doi.org/10.1016/0022-1694(80)90080-3
  23. Silverman, B. W. (1986). Density estimation for statistics and data analysis, London, New York, Chapman and Hall
  24. Yevjevich (1967). 'An objective approach to definition and investigation of continental hydrologic droughts.', Hydrology Paper, No. 23, Colorado State University, Fort Collins

Cited by

  1. A Study on Low-flow Frequency Analysis Using Dam Inflow vol.32, pp.6B, 2012, https://doi.org/10.12652/Ksce.2012.32.6B.363