DOI QR코드

DOI QR Code

Distributed GIS-Based Watershed Rainfall-Runoff Model Development and Its Calibration using Weather Radar

기상레이더와 지형정보시스템을 이용한 분포형 강우-유출 유역모형의 개발과 검정

  • Skahill, Brian E. (Senior Researcher, Coastal and Hydraulics Laboratory) ;
  • Choi, Woo-Hee (San Diego State University) ;
  • Kim, Min-Hwan ;
  • Kim, Sung-Kyun ;
  • Johnson, Lynn E. (Dept. of Civil Engineering, University)
  • Published : 2003.04.01

Abstract

An event-based, kinematic, infiltration-excess, and distributed rainfall-runoff model using weather radar and Geographic Information System(GIS) was developed to acknowledge and account lot the spatial variability and uncertainty of several parameters relevant to storm surface runoff and surface flow The developed model is compatible with raster GIS and spatially and temporally varied rainfall data. To calibrate the model, Monte Carlo simulation and a likelihood measure are utilized; allowing for a range of possible system responses from the calibrated model. Using rain gauge adjusted radar-rainfall estimates, the developed model was applied and evaluated to a limited number of historical events for the Ralston Creek and Goldsmith Gulch basins within the Denver Urban Drainage and Flood Control District (UDFCD) that contain mixed land use classifications. While based on a limited number of Monte Carlo simulations and considered flood events, Nash and Sutcliffe efficiency score ranges of -0.19∼0.95 / -0.75∼0.81 were obtained from the calibrated models for the Ralston Creek and Goldsmith Gulch basins, based on a comparison of observed and simulated hydrographs. For the Ralston Creek and Goldsmith Gulch basins, Nash and Sutcliffe efficiency scores of 0.88/0.10, 0.14/0.71, and 0.99/0.95 for runoff volume, peak discharge, and time to peak, respectively, were obtained from the model.

기상레이더와 지형정보 시스템을 이용한 홍수사상에 기초하고, 운동역학적이며, 초과강우가 고려된 분포형 강우-유출 유역모형이 개발되었다. 이 유역모형에서 강우로 인한 지표면 유출 및 지표면 흐름과 관련된 각종 변수의 공간적 변동성과 불확실성을 인식하고 설명한다. 개발된 모형은 래스터 지형정보시스템과 공간적ㆍ시간적으로 변하는 강우자료와 호환된다. 몬테칼로 모의와 우도값이 이 모형의 검정을 위하여 이용되었으며, 검정 모형으로부터 반응되는 시스템의 가능범위가 허용되었다. 레이더-강우 추정에 대한 보정으로 강우계가 이용되고, 복잡한 토지이용 상태인 미국 덴버시 도시배수홍수조절 구역내에 있는 두 개 유역들(Ralston Creek와 Goldsmith Gulch 유역)의 제한된 기왕 홍수사상에 이 모형이 적용되었다. 제한된 수의 몬테칼로 모의들과 고려된 홍수사상들을 근거로 관측수문곡선과 계산수문곡선을 비교하여, Nash와 Sutcliffe 효율점수의 범위를 얻게 되었으며, 그 범위는 Ralston Creek과 Goldsmith Gulch 유역에 대한 검정모형들로부터 각각 -0.19∼0.95와 -0.75∼0.81이다. 또 한, Ralston Creek과 Goldsmith Gulch 유역의 Nash와 Sutcliffe 효율점수는 유출용적에 대해 각각 0.88과 0.1, 첨두유량에 대해 0.14와 0.71, 첨두유량 도달시간에 대해 0.99와 0.95로 평가되었다.

Keywords

References

  1. Austin, P., (1987). 'Relation between measured radar reflectivity and surface rainfall.' Monthly Weather Review, 115, 1053-1070 https://doi.org/10.1175/1520-0493(1987)115<1053:RBMRRA>2.0.CO;2
  2. Beven, K., (1989). 'Changing ideas in hydrology-The case of physically-based models.' Journal of Hydrology, Vol. 105, pp. 157-172 https://doi.org/10.1016/0022-1694(89)90101-7
  3. Beven, K., and Binley, A.M., (1992). 'The future of distributed models: Model calibration and uncertainty prediction.' Hydrological Processes, Vol. 6, pp. 279-298 https://doi.org/10.1002/hyp.3360060305
  4. Beven, K., (1995). 'A discussion of distributed hydrological modelling.' Distributed hydro-logical modelling, edited by M.B. Abbott and J.C. Refsgaard, Chapter 13A, Kluwer Academic Publishers, Netherlands
  5. Beven, K., Lamb, R., Romanowicz, R., and Freer, J., (1995). 'Topmodel. computer models of watershed hydrology,' edited by V.P. Singh, Water Resources Publications, Highlands Ranch, Colorado, 627-668
  6. Binley, A.M., Beven, K.J., Calver, A., and Watts. G., (1991), 'Changing responses in hydrology: Assessing the uncertainty in physically based model predictions.' Water Resources Research, 27(6), 1253-1261 https://doi.org/10.1029/91WR00130
  7. Bras, R.L., (1999). 'A brief history of hydrology.' The Robert E. Horton Lecture, 79th AMS Annual Meeting, Bulletin of the American Meteorological Society, Vol. 80, No. 6, 1151-1164
  8. Chow, V.T., (1959). Open channel hydraulics. McGraw-Hill, New York
  9. Chow, V.T., Maidment, D.R., and Mays, L.W., (1988). Applied hydrology. McGraw-Hill, Inc., New York
  10. Fairfield, J., and Leymarie, P., (1991). 'Drainage networks from grid digital elevation models,' Water Resources Research, 30(6), 1681-1692 https://doi.org/10.1029/93WR03512
  11. Faures, J.M., Goodrich, D.C., Woolhiser, D.A., and Sorooshian, Soroosh. (1995). 'Impact of small-scale spatial rainfall variability on runoff modeling.' Journal of Hydrology, Vol. 173, 309-326 https://doi.org/10.1016/0022-1694(95)02704-S
  12. Franks, S.W., Gineste, P., Beven, K.J., and Merot, P., (1998), 'On constraining the predictions of a distributed model: The incorporation of fuzzy estimates of saturated areas into the calibration process.' Water Resources Research, 34(4), 787-797 https://doi.org/10.1029/97WR03041
  13. Freer, J., Beven, K., and Ambroise, B., (1996). 'Bayesian estimation of uncertainty in runoff prediction and the value of data: An application of the GLUE approach,' Water Resources Research, 32(7), 2161-2173 https://doi.org/10.1029/96WR03723
  14. Fulton, R.A., Breidenbach, J.P., Seo, D-J, and Miller, D.A., (1998). 'The WSR-88D Rainfall Algorithm.' Weather and Forecasting, 13, 377-395 https://doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
  15. Fulton, R.A., (1999). 'Sensitivity of WSR-88D Rainfall estimates to the rain-rate threshold and rain gauge adjustment: A flash flood case study.' Weather and Forecasting, 14, 604-624 https://doi.org/10.1175/1520-0434(1999)014<0604:SOWRET>2.0.CO;2
  16. Knisel, W.G., Leonard, R.A., Davis, F.M., and Nicks, A.D., (1993). GLEAMS Version 2.10. Part III. User Manual. U.S. Department of Agriculture, Agricultural Research Service, Conservation Research Report series, 205 pp
  17. Kouwen, N. and Garland, G., (1989), 'Resolution considerations in using radar rainfall data for flood forecasting.' Can. J. Civ. Eng., 16, 279-289 https://doi.org/10.1139/l89-053
  18. Michaud, J.D., (1992). Distributed rainfall-runoff modeling of thunderstorm-generated floods-' A case study in a mid-size, semi-arid watershed in Arizona Ph.D. dissertation, University of Arizona, Tucson
  19. Michaud, J.D. and Sorooshian, S., (1994). 'Comparison of simple versus complex distributed runoff models on a midsized, semiarid watershed.' Water Resources Research, 30(3), 593-605 https://doi.org/10.1029/93WR03218
  20. Nash, J.E. and Sutcliffe, J.V., (1970). 'River flow forecasting through conceptual models. Part 1 - A Discussion of principles.' Journal of Hydrology, 10, 282-290 https://doi.org/10.1016/0022-1694(70)90255-6
  21. Ogden, F.L. and Julien, P.Y., (1994). 'Runoff model sensitivity to radar rainfall resolution.' Journal of Hydrology, Vol. 158, 1-18 https://doi.org/10.1016/0022-1694(94)90043-4
  22. Rasmussen, E.N., Smith, J.K., Pratte, J.F., and Lipschutz, R.C., (1989). 'Real time precipitation accumulation estimation using the NCAR CP-2 Doppler radar.' Twenty-fourth Conference on Radar Meteorology, Tallahassee, Florida, American Meteorological Society, 236-239
  23. Reed, S.M., and Maidment, D.R. (1998). Use of digital soil maps in a rainfall-runoff model, CRWR Online Report 98-8
  24. Sherman, U. D. and Johnson, L.E., (1992). Accuracy of mean areal precipitation estimates using calibrated radar. Civil Engineering Report, Department of Civil Engineering, University of Colorado, Denver, Colorado
  25. Skahill, B.E., and Johnson, L.E., (2000). F2D - A kinematic distributed watershed rainfall-runoff model, NOAA Technical Memorandum OAR-FSL-24. Forecast Systems Laboratory, Boulder, Colorado. March
  26. Smith, J.K. and Lipschutz, R.C., (1990). 'Performance of the NEXRAD precipitation algorithms in Colorado during 1989.' Eighth Conference on Hydrometeorology, American Meteorological Society. Kananaskis Park, Alta., Canada, October 22-26
  27. Stewart, K.G., (1991). Flash flood prediction program & related activities. Flood Hazard News, Denver Urban Drainage and Flood Control District, 21(1), 14-18
  28. Stewart, K.G., (1995). Flood warning & preparedness. Flood Hazard News, Denver Urban Drainage and Flood Control District, 25(1), 21-23
  29. Stewart, K.G., (1996). Flood warning & preparedness. Flood Hazard News, Denver Urban Drainage and Flood Control District, 26(1), 10
  30. Stewart, K.G., (1997a). The 1997 floods in the district. Flood Hazard News, Denver Urban Drainage and Flood Control District, 27(1), 1,18-19
  31. Stewart, K.G., (1997b). Flood warning & preparedness. Flood Hazard News, Denver Urban Drainage and Flood Control District, 27(1), 22
  32. USACERL (U.S. Army Corps of Engineers Construction Engineering Research Laboratory), (1993). Geographic resources analysis support system, Version 4.1. User's Reference Manual, U.S. Army, Champaign, Illinois
  33. Winchell, M., Gupta, H.V., and Sorooshian, S., (1998). 'On the simulation of infiltration- and saturation-excess runoff using radar-based estimates: Effects of algorithm uncertainty and pixel aggregation.' Water Resources Research, 34(10), 2655-2670 https://doi.org/10.1029/98WR02009