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Real Time Motion Processing for Autonomous Navigation

J. Kolodko and L. Vlacic

Abstract: An overview of our approach to autonomous navigation is presented showing how
motion information can be integrated into existing navigation schemes. Particular attention is
given to our short range motion estimation scheme which utilises a number of unique assump-
tions regarding the nature of the visual environment allowing a direct fusion of visual and range
information. Graduated non-convexity is used to solve the resulting non-convex minimisation
problem. Experimental results show the advantages of our fusion technique.
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1. INTRODUCTION

For humans, navigating in a complex, dynamic envi-
ronment is second nature however, engineers are yet to de-
sign an autonomous vehicle that can reliably compleie this
task in an unstructured environment. Our aim is to bring
this goal one step closer to reality by designing a practical
system that can operate in dynamic environments similar to
public roads. In this presentation, robots are the only mov-
ing obstacles. We intend to achieve our goal by using mo-
tion as a low level, primitive quantity rather than by using
high level features such as image tokens.

Our approach has several key features: A multi-stage ar-
chitecture to solve the overall motion processing problem
and its mapping to hardware. A core set of assumptions re-
garding the environment. A robust fusion of range and vis-
val information to give preliminary motion information, A
navigation approach designed to complement existing
methodologies. Offline test data generation for algorithm
validation.

The first section of this paper introduces each of these
features. Subsequent sections give a more detailed de-
scription of our short range motion estimation system, di-
rections for future work, and conclusions.

1.1. Multistage motion processing architecture

Fig. 1 illustrates our proposed multistage motion
processing architecture. Preprocessed visual informa-
tion and range data are passed to a robust, incre-
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mental motion estimation algorithm, which is mathe-
matically simple. The algorithm minimises the proc-
essing required at each frame (leading to simpler
hardware implementation) while still providing an
estimate of the motion and boundaries of dynamic ob-
jects. The optical flow constraint equation and the
fundamental equations of motion are used in combi-
nation to fuse visual and range data, eliminating depth
ambiguity.
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Fig. 1. Block diagram of motion processing system



International Journal of Control, Automation, and Systems Vol. 1, No. 1, March 2003 157

Dynamic scale space gives highest priority to the
nearest object (the one with which collision is most
likely) while preventing temporal aliasing. A blend of
regularisation and regression improves noise robust-
ness and gives a one dimensional motion estimate.

The resulting motion estimate is passed to a seg-
mentation routine that fuses a range of information in
order to give a final estimate of object boundaries.
Predicted position feedback is used to incrementally
improve results. Finally, the resulting tracking infor-
mation (position and velocity) for each object is
passed to the vehicles navigation systems.

For motion information to be useful in a dynamic
world, it must be extracted quickly relative to the
veloities of objects in the environment so that naviga-
tion decisions are made with up-to-date information.
However, motion estimation is highly processor in-
tensive due to the massive amount of information
contained in video data; thus, any solution to this
problem requires significant processing power in ad-
dition to clever algorithms. To this end, we have cho-
sen the Signal Master Platform, coupled with a
Gatesmaster add-on board [8], providing us with a
combination of Sharc Digital Signal Processor (DSP)
[9]. 486 and Virtex Field Programmable Gate Array
(FPGA) processing element and a wealth of interface
options. Video data comes from a compact Fuga 15D
camera that does not require a frame grabber - rather
it is accessed directly through a digital interface much
Iike a simple RAM.

Fig. 2 illustrates how our processing architecture is
mapped onto hardware resources. Motion processing,
along with the requisite memory management func-
tionality and interfacing occurs in FPGA. For pre-
liminary testing purposes, this output is fed to a PC
for visualisation, though, in the final system, motion
processing results are passed to the DSP for final
segmentation and tracking. The output from the DSP
is a set of position and velocity estimates that can be
passed to the robot, providing an extra sensory mode
for navigation planning.

1.2. Core assumptions

We make a number of assumptions in order to sim-
plify motion processing. Our system utilises a single
dimensional range scanner, generating a single range
measurement for each image column hence we must
assume that this measurement is correct throughout
the column (i.e. there is a single planar object visible
in that column). To ensure the validity of this
assumption, we use 512*32 pixel images. These nar-
row images greatly reduce the likelihood that two
obstacles (or planes) are visible in any given column
and reduces the computational workload. Our work
also assumes flat illumination (minimising photometric
problems, a reasonable assumption in our laboratory
test environment), and rigid ground plane motion.
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Fig. 2. Mapping algorithms to hardware.

1.3. Navigation approach

Autonomous Navigation schemes are generally
comprised of two integrated stages [1, 5]. Given the
robots current location, goal location, and the struc-
ture of the environment, a path plan is created. Short
term, or reactive planning (obstacle avoidance, lane
keeping etc.) ensures that the path plan is successfully
executed. This can be an iterative scheme: the path
plan may be re-evaluated if reactive planning shows
the current plan is unfeasible.

We incorporate a dynamic obstacle reasoning
(DOR) stage into an existing navigation scheme as
follows. Using a combination of motion data from our
motion sensor and object location from other sensors
DOR creates a map in three-dimensional trajectory-
velocity-time space. Using this map, the path with
highest available velocity for the longest period of
time is selected provided this path is consistent with
(a) the overall path plan and (b) a set of “road rules.”
These road-rules are required to prevent deadlock in
multi-robot environments and ensure efficient use of
the “road.”

Our robotic test beds are configured with a simple

path-planning scheme; the goal is simply to reach a
position relative to the starting position with no apri-
ori knowledge of the environment.
DOR will enforce the rules of the (Australian) road in
the sense that one should pass to the left of static ob-
stacles. This planning is by no means an optimal strat-
egy in terms of time, distance or resources; however it
is realistic in terms of existing road infrastructure. On
the road, overtaking is a special case of obstacle
avoidance since we pass to the right of a slower vehi-
cle. However, to maintain uniformity, our DOR-
equipped robot will overtake an obstacle on obstacles
left hand site.

1.4. Testing
We plan to test algorithms in an offline simulation
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before proceeding to hardware implementation. Do-
ing this allows algorithms to be validated and opti-
mized without the peripheral problems associated
with hardware implementation.

For simplicity, we use MATLAB, whose matrix
based variables are ideally suited to image processing
applications. Algorithms are implemented, and then
tested by using a database of visual and range data
generated by our simulation package. The simulation
package used to generate these scenarios is based on
Polyray [10], a freeware ray tracing program. The
simulation package allows the user to specify a simple
virtual environment including the intrinsic and extrin-
sic camera parameters, camera motion, range finder
parameters and motion, as well as the shape, texture
and motion of environmental objects and lighting. The
result is a set of video, range and “ground truth” mo-
tion information. Scenarios in our database are de-
signed to be visually similar to our laboratory envi-
ronment. Fig. 3 show a typical scenario.

2. ROBUST DATA FUSION

In this section, we discuss our short range motion
estimation scheme in greater detail. The goal of this
scheme is to create an initial estimate of the bounda-
ries of moving objects. We achieve this goal by com-
bining both visual data and range data in a robust sta-
tistical framework.

Our approach to motion estimation is based on the
optical flow constraint equation (OFCE) [4] and is
broadly similar to Blacks’ [2] approach; however, we
utilize the assumptions presented in Section 1.2 to re-
duce the computational load. Furthermore, this algo-
rithm fuses range information and visual data into a
single objective function rather than creating separate
object functions for range and visual data, respec-
tively, as in [7].

We begin with the OFCE (eq 1) where I, I, and I,
are image derivatives and u,v are the horizontal and
vertical components of image velocity, respectively
(bold italics indicate parameters being estimated).

ul +vI +1 =0. M

Apparent vertical motion is of little interest in our
work since all objects in the environment are con-
strained to move on a ground plane. In this situation
apparent vertical motion can only occur when objects
approach or recede from the camera, or when an un-

even ground plane causes “‘noise motion.” For the
purposes of this work we assume v is zero.

We now apply the assumption that there is a single
object in every image column. Rather than compute u
at every pixel, we use an entire column as the region
of support for our motion estimate. This approach is
valid if a column contains a single object, but it is
possible for more than a single object to be visible in
any given column, so we need to weaken this
assumption. Consider aligning the camera so that the
point of contact between objects and the ground is
below the area visible to the camera. This alignment
guarantees that objects will begin from the bottom of
the image though it does not guarantee that the object
will reach the upper boundary of the image. To
minimise the effect of secondary objects near the top
of the image, we weight data at the bottom of the im-
age more highly than data at the top, creating the
weakened assumption that we seek. Combining this
information with the fundamental equations from [6]
and perspective projection gives the estimation prob-
lem
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Here W,,,, is the weighting function and f is the cam-
era focal length, Z., is the depth at the current column
and y/ is a constant that converts our motion estimate
from meters/sec on the camera surface to pixels/frame.
Traditionally the estimator function p is quadratic, lead-
ing to a least squares problem, but we use the Lorentzian
[2] for increased robustness. As a result of substituting
the fundamental equations into (1) we are no longer
solving for apparent horizontal image velocity u but for
apparent left to right velocity in physical space Tx.

Because we expect neighbouring velocity estimates
to be alike, we add a smoothness term to form the
final estimation problem
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where Epis the bracketed term from (2), A is the rela-
tive weight of the data term and cligue is the local
neighbourhood about the current column. In general,
this is a non-convex minimisation {3] making it diffi-
cult to solve. Our solution uses graduated non-
convexity [3] and successive over-relaxation due to
their suitability for hardware implementation.

Robust estimation functions (p) have a parameter
used to adjust sensitivity to outliers (data that does
not fit the current model), a parameter which effec-
tively adjusts the algorithms’ sensitivity to object
boundaries. We observe that object boundaries usu-
ally correspond to range discontinuities; hence, it
would make sense to modulate the sensitivity parame-
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Fig. 6. Optical and fused flow

ter so that motion discontinuities are more likely to be
formed at range discontinuities than elsewhere. One
could also filter the detected edges based on the pres-
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ence of range discontinuities.
both operations.

Our system performs
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3. EXPERIMENTAL RESULTS

To show that our fused approach to motion estimation
produces improved results, we compare it to a purely
optical approach (similar to [2]) and a purely range-
based approach based on the range flow constraint
equation [7]. Each algorithm is implemented using
the same statistical framework and similar parameter
values, where practical. In each case 200 iterations
are performed. The test scenarios are designed to
avoid temporal aliasing (i.e. motion is less than 1
pixel per frame). Our first test scenario (Fig. 4) has a
stationary camera and three moving objects — Object
1 is translating parallel to the camera, Object 2 is ro-
tating and Object 3 is moving perpendicular to the
camera.

Fig. 5 shows the results of using only range data. In
this situation, we are able retrieve two components of
velocity, parallel (Tx) and perpendicular (Tz) to the
camera’s focal plane. The upper two plots show the
theoretically correct result while the lower two plots
show the result of our processing. We can see that Tz
is approximately correct, except for glitches caused
by derivatives. Crosses in these plots indicate loca-
tions where the algorithm has detected an object edge.
Tx is more problematic and shows the limitations of a
purely range-based approach. The problem is again
the derivatives, which are rather uniform due to the
smooth nature of our objects. Because of this, only
the edges of the third object are detected. Visual ap-
proaches also require a derivative that changes from
point to point, but “flat” derivatives are more com-
mon with range data because relatively flat surfaces
are abundant. Finally, notice that the second object,
which is rotating, was missed all together. This is a
correct result: the algorithm only detects objects
whose range changes.

Fig. 6 shows the advantage of using visual
information. The upper plot indicates the ground truth
optical flow. The second graph shows the result for
pure visual data. This result matches well with the ex-
pected result (top Fig. 5) though it is clear that there
are some problems around object 2. Data fusion over-
comes this problem (bottom plot), locating the edge
of the rotating object and giving a more accurate ve-
locity profile over all. As mentioned above, our ap-
plication does not require the detection of rotating ob-
jects but raw visual information can not distinguish
between rotational and translation motion so the ob-
ject is detected.

Our second scenario is similar to the first (see Fig.
7) — the primary difference is that the camera is now
moving.

In this case, the results using range data are very
poor (Fig. 8) again due to the nature of the range de-
rivatives used in the computation. The central graph
in Fig. 9 shows that using purely visual information

has considerable advantage over the use of range data
alone. However the lower graph shows again that the
fused approach is better able to discern object
boundaries, though it is susceptible to over segmenta-
tion. Neither of the visual based approaches was able
to detect the subtle shift in apparent velocity caused
by the cameras forward motion.

4. FUTURE WORK

The algorithms discussed above form one part of
our overall system. Immediate work includes imple-
menting an incremental approach for these algorithms
so that fewer iterations are required per frame. Such
an approach will facilitate hardware implementation.
Further work is necessary to find the optimal parame-
ter tuning and the source of the over-segmentation in

Fig. 9, which appear to be related to the structure
of the algorithm and to parameter tuning, in particular.

5. CONCLUSIONS

In this paper, we presented the overall framework
of our navigation scheme and gave a theoretical and
an experimental background for our novel form of
data fusion. This algorithm fuses range and visual
data to provide a one-dimensional estimate of motion.
In our application, a single dimensional estimate was
sufficient since all objects were constrained to move
on a ground plane. The advantage of this approach is
its enhanced ability to locate the edges of apparently
moving objects, which leads to more accurate motion
estimates overall.
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