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Multi-Dimensional Reinforcement Learning Using a Vector Q-Net
Application to Mobile Robots

Kazuo Kiguchi, Thrishantha Nanayakkara, Keigo Watanabe, and Toshio Fukuda

Abstract: Reinforcement learning is considered as an important tool for robotic learning in
unknown/uncertain environments. In this paper, we propose an evaluation function expressed in
a vector form to realize multi-dimensional reinforcement learning. The novel feature of the
proposed method is that learning one behavior induces parallel learning of other behaviors
though the objectives of each behavior are different. In brief, all behaviors watch other behav-
iors from a critical point of view. Therefore, in the proposed method, there is cross-criticism
and parallel learning that make the multi-dimensional learning process more efficient. By ap-
plying the proposed learning method, we carried out multi-dimensional evaluation (reward) and
multi-dimensional learning simultaneously in one trial. A special neural network (Q-net), in
which the weights and the output are represented by vectors, is proposed to realize a critic net-
work for Q-learning. The proposed learning method is applied for behavior planning of mobile
robots.

Keywords: Reinforcement learning, Q-learning, multi-dimensional evaluation, neural networks,

intelligent robot.

1. INTRODUCTION

Learning algorithms based on evaluative feedback
signals are generally referred to as reinforcement
learning algorithms. In a reinforcement learning
paradigm, a system called agent senses the environ-
ment and produces control actions. The environment
responds to these control actions. Based on these re-
sponses, a reward function will evaluate the control
actions. The agent tries to optimize the control policy
to maximize the total expected reward over a finite
time-span. Learning may occur using the prediction
error of expected rewards. Such a learning mecha-
nism can be found in the basal ganglia of the mam-
malian brain also [1]. In [1], it is experimentally
shown that the activity of dopamine neurons in the
ventral tegmental area and the substantia nigra of rats
reflect the prediction of temporal difference or the
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prediction error of the expected rewards.

Reinforcement learning [2][3] plays an important
role in robot learning under unknown/uncertain envi-
ronments. In a reinforcement learning paradigm, the
optimum control policy can be obtained based on in-
teractive explorations in the environment. Therefore,
reinforcement learning is effective for intelligent ro-
bots in making a game strategy [4] or skillful motions
[5] based on their experience. Many studies on rein-
forcement learning have been performed to make the
robots work intelligently in an unknown/uncertain
environment [4]-[13]. In these studies, only one op-
timal or desired behavior of the robot is assumed, and
evaluated with a single evaluation function or a
weighted sum of evaluation functions. For some so-
phisticated systems such as intelligent robots, how-
ever, it is sometimes difficult to evaluate their per-
formance with only one evaluation (reward). The de-
sited behavior sometimes depends on the circum-
stances since contradicting objectives may have spe-
cial importance in certain circumstances. For example
the behavior of less energy consumption is usually
preferred. However, time efficiency is more impor-
tant than energy efficiency when the robot is in a rush
Usually, the best behavior with respect to energy
consumption is not the same as that with respect to
time efficiency. Furthermore, safety is the most im-
portant when the robot carries out important tasks.
Thus the desired behavior should be changed accord-
ing to the situation. This kind of idea is similar to the
idea of multiple reward criterion proposed by Uchibe
and Asada [13].
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In this paper, we propose an evaluation function
expressed in a vector form to realize multi-dimen-
sional reinforcement learning. Q-learning {3], one of
the basic reinforcement learning methods, has been
applied in this study. A special neural network (Q-net),
in which the weights and the output are represented
by vectors, is proposed to realize critic networks for
Q-learning. Each parallel network in the Q-net works
as an element of the vector Q-net. The novel feature
in the proposed learning algorithm is that learning
occurs in all the networks while implementing any
given behavior. This simultaneous learning is realized
through cross-criticism by reward functions at any
given time. When a certain behavior is performed,
reward or punishment with respect to the performed
behavior is evaluated by all the elements in the vector
evaluation function. At the same time, all the
networks in the Q-net try to predict the expected sum
of future rewards from each network’s point of view,
even though the actual behavior corresponds to only
one of the objectives in the vector of objectives. This
kind of cross evaluations can be found in the learning
process of human beings in social interaction as well.
Sometimes, we observe the behavior of another per-
son in a given situation and try to subconsciously pre-
dict future results based on a self-centered internal
model. While observing we continuously criticize the
internal model of prediction, and thus, performing
cross learning. Therefore, we learn not only from our
own behavior but also by observing the behaviors of
others. The proposed learning method is based on a
similar phenomenon.

In this study, we have assumed that there are ob-
stacle regions, slippery regions, and danger regions in
the working environment of the mobile robot. The
robot is supposed to waste some energy and time for
the slip in the slippery regions, and waste much en-
ergy and time in struggling to move in the danger re-
gions. The dynamics of the mobile robot is taken into
account. The energy minimum behavior, the hasty
behavior, and the safe behavior are efficiently ex-
plored using the proposed reinforcement learning in
this environment. Consequently, each weight vector
and the output vector of the Q-net consist of three
components in this case: 1st component for energy
minimum behavior; 2nd component for hasty behav-
ior; and 3rd component for safe behavior. The robot is
able to change the optimal behavior according to the
situation after the proposed learning. The effective-
ness of the proposed reinforcement learning has been
evaluated in simulation.

2. DYNAMIC MODEL OF THE MOBILE
ROBOT

The schematic diagram of the mobile robot is
shown on the left side of Fig. 1, where /, is the mo-

ment of inertia around the c.g. of robot, v is the ve-
locity of robot, ¢ is the azimuth of robot, and / is the
distance between the left or right wheel and the c.g.
of the robot.
Let
x(1)=[v(®) ¢(1) p(]
be the state variable vector and

u(t) = [ur U ]T

be the manipulated variable vector. Then the state
space model for the mobile robot can be written as:

x(t)= Ax(t)+ Bu(t) (1)
with
[—2c/MF*+21) O 0
A= 0 0 1

0 —2c’ /(I +21.01%)

] 0
[—kri(Mr? +21) —krl(Mr* +21)
B= 0 0

krl (1,77 +21.1%) krl /(1 17 +21 1%)

where M represents the mass of robot, /. is the mo-
ment of inertia of wheel, ¢ is the viscous friction fac-
tor of wheel, & is the driving gain factor, r represents
the radius of wheel, and u, and u, are the right and left
driving input torques, respectively.

The physical parameters of the mobile robot used in
this study are given by I,=0.6541[kg m’], M=25.5
fkgl, [=0.165 [m], r=0.05 [m], 7, =0.4419%10-3 [kg
m?], k=90, and c=0.0479 [kg m’/s].

3. MULTI-DIMENSIONAL
REINFORCEMENT LEARNING

To clarify the basic concept of the proposed learn-
ing, the Q-learning method, one of the basic rein-
forcement learning methods, has been selected in this
study. The proposed learning method is applied for
behavior planning of the mobile robot. A special neu-
ral network (Q-net) is proposed to realize critic net-
works. In the proposed Q-net, the weights and the
output are represented by vectors, although those are

YT
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Fig. 1. Schematic diagram of the mobile robot.
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usually represented by scalars. Each component of
the vectors is in charge of each item of the evaluation
(reward). In this study, evaluation is carried out with
respect to energy consumption (energy minimum be-
havior), time efficiency (hasty behavior), and safety
(safe behavior), assuming that there are obstacle re-
gions, slippery regions, and danger regions in the
working environment of the mobile robot. In this case,
each weight vector and output vector of the Q-net
consist of three components (i.e., 1st component: for
energy consumption, 2nd component: for time effi-
ciency, and 3rd component: for safety). After a cer-
tain behavior is performed, each component of the
weight vectors, and the output vector of the Q-net is
adjusted based on reward or punishment for energy
minimum behavior, hasty behavior, and safe behav-
ior.

3.1. Q-net architecture

The proposed Q-net consists of three layers (input
layer, hidden layer, and output layer). There are 16
input variables (1: distance to target, 2: angle to target,
3: distance to obstacle, 4: angle to obstacle, 5: dis-
tance to the first slippery area, 6: angle to the first
slippery area, 7: distance to the second slippery area,
8: angle to the second slippery area, 9: position of
robot in X-direction, 10: position of robot in
y-direction, 11: velocity of robot in x-direction, 12:
velocity of robot in y-direction, 13: azimuth of robot,
14: azimuth change rate, 15: left wheel torque, 16:
right wheel torque).

There are 50 neurons in the hidden layer. The acti-
vation function used in the neurons is written as:

y, = 1\ , i=1,...,50 (2)
1+
16
S, =w, +Zw,.jxj
=
Wi :[wlm' Wi w3oi] 3)

WU Z[W“j WZij W3ijJ

where w,; is the bias weight vector of the ith activa-
tion function, wj; represents the connecting weight
vectors between the ith activation function and the jth
input given by x;.

The output of the Q-net is the Q values of the cur-
rent control input combination given the situation.
The Q values are calculated by:

Q= iwoiyi €]

where wo; is the output weight vectors of the Q-net
that connect the activation function and the output
node.

3.2. Definition

Let the right and left side control torque inputs to
the mobile robot by a conventional controller based
on a potential field method be denoted by u,, and u,,,
respectively. Denote the right and left side control
torque inputs given by the Q-net be u,, € U, and u,
e Uy, respectively, where U, and U, are real
bounded spaces within which the right and left hand
torques are defined.

3.3. External reward function

The external reward function is a vector of func-
tions each rewarding distinct behaviors. In this case,
the reward function vector consisted of three compo-
nent functions for 1: hasty behavior, 2: Energy con-
scious behavior, 3: safety conscious behavior. There-
fore the vector of functions were given by:

r()=[r(t) n® O )
— 4 =D
I’l(l‘)—mw‘*ﬂ;bx‘f‘e +P (6)

where D is the distance to the target, P is a punish-
ment given by P=-10 if (lu| >0.04 or |u]
>0.04), and 7, is the reward or penalty for avoiding
or colliding with the obstacle, which is calculated by
Fops= —100e”F»°% if close to the obstacle region,
and r,,s=1 if sufficient distance is kept; d,;; is the
distance to the obstacle.

() =40, +e ")+, @)

where V__ is the target reaching velocity.

r(t)= ~100¢ 03 4 T+ e?

®

where dg, is the distance to the danger region. Inputs
to the right and left wheels are given by:

ur = Uer + uqr
_ 9
W=t uy ®

Let the output of the Q-net for a given vector of en-
vironmental sensor information and a chosen control
input be denoted by:

Q.O=101(t) Q0D Q51

the maximum Q,(#) that can be obtained by changing
the right and left wheel torques in U, and U, for a
given environmental situation be denoted by Q, ,,.,.(f)
and the reward obtained from an external reward
function be given by:

MO=[rt) r:t) ry®]".

Then the following algorithm can be applied to obtain
the optimum behaviors of the robot.
3.4. Reinforcement algorithm
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The algorithm of the proposed reinforcement
learning is expressed as follows:

Step 1: Initialize the weights of the Q-net, and set
tume t=0.

Step 2: Sense the state of the robot and calculate u,
and u,.

Step 3: Given the current control input and the en-
vironmental information, evaluate the Q-net and ob-
tain a vector Q(f).

Step 4: Run the robot for one sampling time dura-
tion and obtain a reward vector ¥(¢+1) from a set of
external reward functions.

Step 5: For a given behavioral objective, i.e., en-
ergy optimization, hasty movement, or safe move-
ment, Evaluate the Q-net and obtain Q, . (t+1), and
the pair of control inputs u, ,, and u, ,, that renders
(2\una,\‘(t +1 )

Step 6: Calculate the temporal difference

A+ D) =[AE+1D) At +1D) A, +DT
given by

A+ =r@+D+y Q. . t+1D)-0 (),
O<y<l

(6)

Step 7: Use this A(r+1) vector to update the re-
spective weight vectors of the Q-net.

Step 8: Set u,=u, ,, +N(0,0) so that=1/(1+

e"""Y), where p is the counter of the behavior type
that decides the control inputs at time ¢ +1. Go to Step
3, and set time t=¢+1;
Continue these steps until a predetermined level of
performance is achieved by all the vectors of weights
in the Q-net. Note, that a vector of Q values given by
Q.(t) and reward values given by r(¢+ /) are evaluated
at any given time, eventhough only one behavior is
executed at any given time. This ability of parallel
learning while executing a single behavior is the main
advantage of the proposed method. This results from
the mechanism of cross-criticism found in the pro-
posed method.

4. SIMULATION

To evaluate the effectiveness of the proposed learning
method, computer simulation has been performed. In
this simulation, the mobile robot is supposed to head
toward the goal subjected to various performance
criteria. There are one obstacle region, two slippery
regions, and one danger region in the working envi-
ronment as shown in Fig. 2. In this simulation, the
robot is supposed to waste 20% of driving torque for
the slip in the slippery regions, and waste 80% of
driving torque for struggling to move in the danger
regions. The dynamics of the mobile robot

T T v —
4 TARGET @
Slippery
Obstacle
2|
Slippery Danger
o] ~I. STARY -
0 2 4

Fig. 2. Working environment of the mobile robot.

= == = Energy minimum behavior
m—— = Hasty behavior
— Safe behavior

With random Without random With random

Vector

Number of trials

Fig. 3. Learning at each trial.

explained in Section 2 is taken into account. The en-
ergy minimum behavior, the hasty behavior, and the
safe behavior are considered in this simulation, al-
though other behaviors can be considered.

Although multi-dimensional learning is carried out in
each trial, one representative behavior is chosen in
turn from among the three evaluating behaviors (en-
ergy minimum behavior, hasty behavior, and safe be-
havior). The random behavior is generated in certain
range during the learning at every other trial of each
evaluating behavior as shown in Fig. 3.

Fig. 4 and 5 show the simulation results after 1000 tri-
als. The obtained energy minimum behavior, hasty be-
havior, and safe behavior are depicted in Fig. 4 (a), (b),
and (c), respectively. The torque profiles of energy mini-
mum behavior, hasty behavior, and safe behavior are
shown in Fig. 5 (a), (b), and (c), respectively. One can see
that the energy minimum behavior consumes less energy
than the other behavior. In the hasty behavior, the robot
quickly arrives at the target although a lot of energy is
consumed. The safe behavior takes a lot of time to get to
the target. These results show that the behavior of the ro-
bot can change depending on the situation.

5. CONCLUSIONS

A novel multi-dimensional reinforcement learning
method has been proposed and applied to Q-learning
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Fig. 4. Simulation results.

in this study. A special neural network (Q-net) is pro-
posed to realize critic networks. In the proposed
Q-net, the weights and the output are represented by
vectors, although these are usually represented by
scalars. Each component of vectors is in charge of
each item of the evaluation (reward). Consequently,
each component of the weight vectors and the output
vector of the Q-net is adjusted based on reward or
punishment for each item of the evaluation after a
certain behavior is performed. The novelty of the
proposed method is that the algorithm facilitated par-
allel learning of all behaviors while executing a sin-
gle behavior. This novel feature is expected to accel-
erate the learning speed of multi-dimensional
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Fig. 5. Torque profiles.

reinforcement learning algorithms. This kind of a
cross-criticism is expected to function in the human
brain, though there is no biological evidence so far.
Yet, this phenomenon is seen in human learning
through social interaction, where one updates its in-
ternal models by observing the behaviors of others. In
this method, the robot is able to change the optimal
behavior according to the situation after the learning.
Simulation results show the effectiveness of the pro-
posed reinforcement learning.
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