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Stability of Time Delay Systems Using Numerical Computation of
Argument Principles

Young Soo Suh

Abstract: This paper proposes a new numerical method to check the stability of a general class
of time delay systems. The proposed method checks whether there are characteristic roots whose
real values are nonnegative through two steps. Firstly, rectangular bounds of characteristic roots
whose real values are nonnegative are computed. Secondly, the existence of roots inside the
bounds are checked using the numerical computation of argument principles. An adaptive dis-
cretization is proposed for the numerical computation of argument principles.
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1. INTRODUCTION

Consider the following time delay system:

N, N
i=3 Axa-h)+Y | ”/ Re™Qx(t+rdr, (1)
i=1 i

i=0

where xe R"is astate, hy=0,and (A,P,Q,.R,)are
real matrices of compatible sizes.

The system (1) encompasses a large number of dis-
tributed delay systems. For example, the closed-loop
system in [1] is given in the form of (1). Another ex-
ample can be found in [2], where the closed-loop sys-
tem is of the form (1).

The characteristic equation of (1) is given by

f(s)=det(s] — Z,N:'U Aeh .
_zi,iz] ,[_U Re" Qe dr)=0.

Py i
Although much attention has been paid to the stability
of (1), a computable analytic method to check the
stability of (1) is not completely known. For general
time delay systems, there is a necessary and sufficient
stability condition based on a Lyapunov functional
[3}: however, the condition is given in the form of an
operator Lyapunov equation, and numerical approxi-
mations are needed to compute it. For commensurate
point delay systems (4, = 4, N, =0), there is a sta-
bility condition [4] using the fact that the root of (2)
varies continuously with respect to the change of A.
This stability condition provides an interval [4,, 4, ]

inside which the stability of (1) does not change. Thus,
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if the system is stable for # = h,, the system is stable
for all he[h,,h, ] This stability condition is useful

only for h, = () since the condition itself does not
provide a way to check the stability for 4, # 0. To

overcome this problem, a method, which investigates
the movement of roots of (2) on the boundary r=4, ,

was devised [5][6].

For a general class of time delay systems, a cur-
rently available method [7] to check the stability of
(1) is to compute closed-right half plane roots of (1).
However, the stability check using the method is not
an automatic process. Furthermore, it is not necessary
to compute roots of (1) just to check the stability of
(1); it suffices to check whether there are roots in the
closed-right half plane. The nyquist theorem can be
used for this purpose; however, the nyquist theorem is
a graphical method and not a numerically amenable
method. Hence a new method to check whether there
are roots in the closed-right half plane is proposed in
this paper. The basic idea is based on the fact that
roots can only exist in a confined location of the
closed-right half plane if they exist. Hence it suffices
to check the confined location for stability instead of
the whole closed-right half plane.

The paper is organized as follows. In Section II, the
rectangular bounds of the closed-right half plane roots
of (2) are derived; the roots of (2) in the closed-right
half plane can only exist inside the rectangular
bounds. In Section III, the existence of roots in the
rectangular bounds is checked using the numerical
computation of argument principles. In Section 1V,
several examples are given to illustrate the proposed
method to check the stability of (1). The conclusion is
given in Section V.

Notation

|4 2-norm of matrix A
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n(A) matrix measure of A[8]
A, (A) the i-th eigenvalue of A
o(A) max Re A, (A)
MA(A) structured singular value of A with
respect to A[9]
arg f (s) argument of complex function f(s)

Arg f(s) principal argument of f (s)

2. RECTANGULAR BOUNDS OF
ROOTS WHOSE REAL VALUES
ARE NONNEGATIVE

Since )e" <1, Res=0, the possible location

ofroots of (2) whose real values are nonnegative is
confined. In this section, two rectangular bounds of
the location are provided in Theorem 1 and 2. The
bounds of Theorem 1 are the generalization of the
bounds of [10]; the bounds of Theorem 1 are easy to
compute but rather conservative. The bounds of
Theorem 2 are computed using linear matrix inequali-
ties [11] and are less conservative than those of Theo-
rem 1. When (A,,Q,,R,) are small, it suffices to use

the bounds of Theorem 1; when (A.,Q.,R) are

large, it is desirable to use the bounds of Theorem 2
to avoid overly conservative bounds. Since
(A,,P,Q,,R,) are real, the roots of (2) are symmetric

with respect to the real axis. Hence the bounds are
also symmetric with respect to the real axis, and the
rectangular bounds can be determined by two positive
variables / and [, (every closed-right half plane

root s satisfies Res </, and [Ims‘Slz) as seen in

The first bounds are given in the next theorem.
Theorem 1 :Let / and [, be defined by

L= A+ A+ 0
L I=/1(—jAo)+Z:V=Inl|Ai + iN=217"’

where ¥, is defined in Lemma 1. Then

3

Res<l, lIms‘Sll, VseW

where W is the set of roots of (2) whose real values
are nonnegative.
Proof: Noting the properties of matrix measure

2 (8],
Re A(A) < u(A),
Im A(A) € u(-jA),
U(A+ B) < y(A)+ 11(B),
#(A) <||A],

we obtain
Res < ReA(4,+Y . Ae ™
+X5 [, Re0edn
< u(A)+Y " A
>
Ims < Im A4, + 3" Ac™
X[, ReQean
< u-jay+ YAl
DI

Invoking Lemma 1, we obtain (3). O

The next lemma is concerned with the norm
bounds of the distributed delay terms of (2).

Lemma 1: For Res > 0, the following is satisfied:

i

0 R Fr .\rd
: e Qe’dr

”.v,w

0
Rr sr
[, Re"Qevar|

"NW

0 .
NL Re"Qe"dr|<y, @)

where y,is defined by

_ =l a(=F Xy, Z J k j—k
Vi _ijl [e k:()( D (hN|+f)
i =y }IIR.IIIIMIHIQII

al-Bf =k a-Ry | @R

N, comes from Schur decomposition of P:
UPRU, =D, +M,

where U, is a unitary matrix, D,is a diagonal ma-
trix, M,is a strictly upper triangular matrix, and
m,is the index of nilpotency of M, (ie., m,=
min(s : M; =0)).

Proof:

<

0 R }er srd
i€ € ar
e

J‘"N,ﬂ
0

Using the following inequality [12]:

m; ~1 . rj

Pr J
e s e Xl =,
J=0 J!

Ri||”e‘P'r o, ||dr

we obtain
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0 Pr s
j Re"Qe"dr

‘hmn

< Ny o (-P)r =1 i
- € 0 /'
} j=

e ar ||R i, u o]

/ 0
ay -1 J
=2 IRl el
a1 AT Z ( 1) r’ k Jt /mn
Jt at-For k=0 at-B G-t] |,
_ e N A 7 ﬁ)(/zwl)zj k (j—k)
Z, 0|: k=()( D) (hN.ﬂ')

] _ ey }IIRJHIM 'l

al-P -k a-PY (=8

where the following is used in the third equality:

porafefgor ity

rA

The second bounds are given in the next theorem.
Theorem 2: If there exist / €R>0, X=X,

=R >0 D=DeR" >0 and 4 ¢R>0 such that

i E, XA, - XAN, rX - }/N:X
A'X | -D,

AL X -D, <0, (5)

YuX ~d,1

Y, X —dy 1
where
N, N,
E =(A-IIYX+X(A-1D+) D+ dl,
i=1 i=1

then

Re s<i, VseW,

where W is the set of roots of 2 whose real values are
nonnegative.

If there exist [,eR>0 , VY=Y eC”>0,
D, =D eR™>0,and 4 eR>0 such that
[ E, |vA - YA, 7Y - Y T
AY |-D,
ALY Dy, <0, (6)
Ing —-d,1
7N2Y —sz 1

where

N, Ny
E, =(-jA, - LY +Y(=jA,—L,I)+ Y D, + Y dI,then

i=l i=]
[Ims|<i,, Vse W.

Proof: (/, part) For notational simplicity, it is as-
sumed that N =N, =1.
f(s)#20 ., VRes>/ , which is equivalent to
f(s+1)#0, VRes>[, f(s+1l)isgivenby

It suffices to show that

f(s+1)=det(sI +11 - A,))
det(I —(sI +1I—A)™

0
=S+ Pr (s+h)r
(Ae + thlee'Q,e 7 dr)).

Note det(s/ +/,1—A,)#0, VRes20 since E, <0.
It is easy to show that f(s+/,)#0, VRes20 if

det(I —(sI +1,1 - A)"'[A }/‘I]Dl} #0,

for all Res=>0,

tion (7) is a standard structured singular value prob-
lem [9]; (7) is satisfied if

and ||A2”31. The condi-

ﬂA([ﬂ(sl +1,-A)'[A  yID<1,VRes>0,

LY
- N

Note forany p, =p, >0 and d, >0, we have

where

,uA(li :I(s1+l A4 71D

D; R
< { ll}(s1+l,—A0)'[AlD,z rd, J
dy

VRes2=0.

It is standard that (5) is equivalent to the right-hand
side of the above inequality. Hence we obtain / . The

[, part can be proved in the similar manner.

3. NUMERICAL COMPUTATION OF
ARGUMENT PRINCIPLES

Since the possible location of roots whose real val-
ues are nonnegative is confined, the system is stable
if there is no root in the possible location. The exis-
tence of roots is checked using argument principles
along the rectangular bounds given by Theorem 1 and
2. In this section, only usual stability is considered
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since ¢ -stability is a direct extension of usual stabil-
ity.

Argument principles provide the number of roots
inside the contour of Fig. 1 (b) as seen in the next
theorem. Recall that roots are symmetric with respect
to the real axis; thus only the upper part is checked.

Theorem 3 : [13] Let T" be a rectangular counter-
clockwise contour (see Fig. 1 (b)). Let (2) have no
zeros on I'. Then

1
Ey J.rarg f(s)ds =1L, (8)

where L is the number of roots of f(s) counting

multiplicities interior to T'.
For the purpose of a stability check, the integral
along the real axis (T, in Fig. 1 (b)) can be omitted

due to the next theorem.
Theorem 4 : Let (2) have no zeros on I, T, and

r,. Then
B SO0 =L 5L O)

2

where [, is the number of roots of f(s) counting
multiplicities interior to T", and L, is the number of
roots of f(s) counting multiplicities on T,.

Proof: If there is norooton I, (ie. L, =0), then
the proof is obvious from Theorem 3 since
J: arg f(s)ds=0. If L, #0 (for simplicity, it is as-

sumed [,=1 ), suppose a small circle
(b—v—d—." —4 in Fig. 2) around the root s, ,
where s is on T,and f(s,)=0. The circle can be
chosen such that (i) the only root of f(s) inside the
circle is s, and (ii) it is small enough so that the in-
tegral along the lower half-circle is 7z ; thatis

.[r arg f(s)ds=n. (10)

b’
From Theorem 3,

1
—[ J.l‘, +0,+T, arg f(S)dS + -[1—)[74)("—)(1—)(' arg f(S)dS:I

27
=L +1.

Noting (10) and J‘ = L =0, weobtain (9). [
a—b —e

Given the integration value of (9), it is not always
possible to determine [, and [, uniquely. How-

ever, as long as stability is concerned, the exact num-
ber of roots is not important; if the integration value
of (9) is nonzero, the system is unstable. Hence Theo-
rem 4 can be used instead of Theorem 3 for the stabil-
ity check.

In order to check the stability of (1) using Theorem

4 and Theorem 1 (or Theorem 2), two problems
should be considered.

1. How to compute the integrations in (9)?

2. What if there are rootson [, L,and L?

Firstly, (9) is computed by discretizing the integral
path. For example, L, is discretized into N seg-
ments by N +1 points; then the following is satis-
fied:

Jj, e f(s)ds =Y arg(f (p.) = arg(f (p, ). (A1)

as long as
larg(f (p,) —arg(f(p._))| <27, Vi.  (12)

It is noted that the relation of (11) is not an approxi-
mation but an exact equation as long as (12) is satis-
fied. Hence it is important to discretize the path such
that (12) is satistied. For a circular contour, a guide-
line for the fixed discretization size is given in [14]
based on geometric interpretation and numerical ex-
periences. In the following, a computational proce-
dure is proposed to compute (11). The condition (12)
is most likely to be violated when roots are located
near the contour; then arg f(s) changes rapidly. Thus

discretization size should be small when roots are
near the contour. In the proposed procedure, the dis-
cretization size is adaptively adjusted when |f(s)| is

imaginary

real r,

0 Ty 0

(a) (b

Fig. 1. (a) Closed-right half plane roots bounds,
(b) Integration contour.

A

T
) o
\ r
[ ( 4
C
a b d €

¢’

Fig. 2. Integration contour with a small circle around
arooton T,.
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small (i.e. roots are near the contour). Furthermore, if
|f(s)|is smaller than the predetermined value, roots

are determined to exist on the contour, which resolves
the problem 2

Computational procedure for (9) based on adaptive
discretization

1. Let p, be discretization points of I', where
p, is the starting point of I' and p, is the end

point of I'. Then (9) is computed using the following
equation:

1
— arg f(s)ds
| oy 4 -L|+I‘3+I‘1 (13)
=52 A (p) —arg(f ()

It is noted that $N$ is determined not in advance but
by the next step.
2. Gtven Piy» the next point P, is determined

such that

p,—p,|=min(EPSLEPS2|f(p,_)]). (14

3. If f(p,)<EPS3, then stop. There is a root on

the contour; hence the system is unstable.
4.Let F, be the summation of (13) and F, be an

integer nearest to 2F,. If |2F, — F,|>EPS4, repeat

the computation with smaller EPS2 and EPS3.

The third step checks whether roots exist on the
contour. The second step is for the condition (12). Al-
though numerical experiences shows that the second
step is very reliable, it is not foolproof. Theoretically,
it is possible that (12) is violated even if (14) is satis-
fied. The fourth step is a fail-safe condition to check
whether (9) is violated. Note 2F, should be an inte-

ger value from (9) when (12) is not violated.

The worst case number of discretization step is de-
termined by EPS1 and EPS2. For example, the worst
case step number for T, is T, /EPSI.

1

EPS values are trade-off parameters between reli-
ability and efficiency of the proposed algorithm. If
EPS values are chosen conservatively, the algorithm
is reliable (i.e. (12) is less likely violated), but with
the sacrifice of efficiency (i.e. it needs more computa-

Table 1. EPS values in the computational procedure.

r, and T, Iy
EPS1 0.1 0.01
EPS2 0.1 0.01
EPS3 10”7 1077
EPS4 0.2 0.2

Table 2. [ and [, comparison.

o
A=
-1 -1
1,(Theorem!) 0.718
1,(Theorem2) 0.449
1,(Theoreml) 1.618
1, (Theorem?) 1.618
o
A=
0
;,(Theorem1) 4.565
1, (Theorem2) 2.354
1,{Theoreml) 5.465
1,(Theorem2) 2.818

tion). From extensive numerical experiences, EPS
values are chosen as in Table 1. In the case of EPS1
and EPS2, smaller values are used for the path T

since roots can be located near the path TI,, while

near roots can be avoided for the paths T, and T,.

4. NUMERICAL EXAMPLES

Example 1: This example compares Theorem 1
and Theorem 2. [/ and [, values given by each

theorem for 3 different systems are compared. The 3
different systems are given by

-2 0
() = _ (15)
x(t) {0 _0'9}c(t)+A,x(t h),

where h=1 and A, is different for each system.

The result is given in Table2. It can be seen that
Theorem 2 gives smaller / and /[, values; thus the

bounds of Theorem 2 are less conservative bounds of
closed-right half plane roots.

Example 2: Consider (15) with 4 :{_1 O] The

-1 -1

system is considered in [15] and is stable for
h £6.17. The computation of (13) is given in Table 3.
As seen in Table 3, the computation correctly deter-
mines the stability of the system. It is worthwhile not-
ing the change of N of T, with respect to the

change of 4, which is the number of the discretiza-
tion step for the path I',. As h approaches 6.17,

roots approach the imaginary axis. To cope with these
near roots, the discretization size is adaptively de-
creased (i.e. N is increased) as proposed in the com-
putational procedure in Section IIL

Example 3: This example has a distributed delay
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Table 3. Numerical computation of argument princi-

ples for different 4.

H 1.00 6.16
Nof I 18 18
Nof T, 6 6
Nof I 45 265
.‘-r,+r:+r3 arg f (s)ds 0.000 ~1.414x107
H 6.17 6.18
NofT, 18 18
Nof T, 6 6
NofT, 306 278
,f parar, T8 f(s)ds | _y 414107 1.000

term. Consider the following system:
(1) = Age(t) + Ax(t—5) + j°5 Re” Qx(t + r)dr,

where A ,A,, P, Q,and R are given by

'

0.000  1.000 0.000  1.000
4’{—0.420 —1.193}’ ‘{—0.420 —1.193}’
_[0702 0323
_[—0.323 0.702}’

_[-0.029 0.001] _ [0.000 0.000
_[0.194 0.312}’ {—0.597 —0.552}'

This system is the closed-loop system example stabi-
lized by the LQ regulator in [1]. Using Lemma 1, it is
found that

u | °, ReP" Ox(t + r)dr| < 0.413.

Using Theorem 2, it is found that [ =0.558 and
I, = 1.226 .
7.068x107" ; hence the system is stable.

The computation of (13) gives

5. CONCLUSION

This paper has proposed a numerical method to
check the stability of a general class of time delay
systems. The proposed method is based on argnment
principles and the fact that roots whose real values are
nonnegative can only exist in the confined area. Us-
ing the proposed method, the stability of a general
class of time delay systems can be checked reliably

and efficiently.
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