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Optical Flow Measurement Based on Boolean Edge Detection and

Hough Transform
Min-hyuk Chang, II-jung Kim, and Jong-an Park

Abstract: The problem of tracking moving objects in a video stream is discussed in this pa-
per. We discussed the popular technique of optical flow for moving object detection. Opti-
cal flow finds the velocity vectors at each pixel in the entire video scene. However, optical
flow based methods require complex computations and are sensitive to noise. In this paper,
we proposed a new method based on the Hough transform and on voting accumulation for
improving the accuracy and reducing the computation time. Further, we applied the Boo-
lean based edge detector for edge detection. Edge detection and segmentation are used to
extract the moving objects in the image sequences and reduce the computation time of the
CHT. The Boolean based edge detector provides accurate and very thin edges. The differ-
ence of the two edge maps with thin edges gives better localization of moving objects. The
simulation results show that the proposed method improves the accuracy of finding the op-
tical flow vectors and more accurately extracts moving objects’ information. The process of
edge detection and segmentation accurately find the location and areas of the real moving
objects, and hence extracting moving information is very easy and accurate. The Combina-
torial Hough Transform and voting accumulation based optical flow measures optical flow
vectors accurately. The direction of moving objects is also accurately measured.

Keywords: Optical flow, Boolean based edge detection, Hough transform, voting accumulation.
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1. INTRODUCTION

Motion estimation, which may refer to image-plane
motion (2-D motion) or object motion (3-D motion)
estimation, is one of the fundamental problems in
digital video processing and has been the subject of
substantial research effort. In short, motion estimation
is very important for dynamic scene analysis, such as
3D-object reconstruction [1], object tracking [2], ro-
bot navigation [3,4], and so forth. One way to find
3D motion information involves getting its perspec-
tive projection on the image plane. This is usually
called the “velocity field" and represents the apparent
velocity of the image pixels from one frame to an-
other frame. One of the most notable approaches to
finding the velocity field is based on the estimation of
a measure of the change of image brightness in the
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frame sequence commonly referred to as optical flow

[5]. Optical flow represents an approximation of the
velocity field, which is a purely geometric concept. In
many applications, optical flow is a sufficient ap-
proximation of the velocity field and can be reasona-
bly employed in its place. Different approaches for
optical flow estimation exhibit different behavior with
respect to discontinuities and for different types of
motion. The two most popular approaches of optical
flow are the regularization-based and multiconstraint-
based approaches.

Regularization-based [5,6,7] approaches consider
velocity field estimation as an ill-posed problem. So-
lutions are obtained by minimizing a function where a
smoothness constraint is appropriately weighted to
regularize the solution. Usually, these methods lead to
iterative solutions and the velocity is evaluated at
every point of the image. Drawbacks of these ap-
proaches are that difficulties occur at the regions of
object occlusions. Further the depth of propagation of
the field depends on the number of iterations used and
on the weighting factor of the regularizing.

Multiconstraint-based [8,9,10] approaches of opti-
cal flow are based on the possibility of defining a set
of constraint equations for the point under considera-
tion. This set of equations is usually solved by nu-
merical methods. Traditional numerical methods, like
the least-squares technique, are averaging methods
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and are thus susceptible to errors in cases of occlusion
and of noise. Another drawback of these optical flow
based methods is the imprecise detected motion
boundary because motion is usually nonhomo-
geneous near the motion boundary. Furthermore, the
object contour remains undetermined when the mo-

tion of the object is similar to that of its neighborhood.

Therefore, several methods have been proposed that
use not only optical flow, but also other information
such as color and edges [11-14].

In this paper, a new multiconstraint based optical
flow along with Boolean based edge detection is used
for finding motion information in the image se-
quences. We first find the locations and areas of the
moving objects in the input image sequence so that
we can reduce the computational time for the Hough
transform and voting accumulation to find the optimal
constraint lines for optical flow estimation. The Boo-
lean based edge detector [15] is applied to the two in-
put image sequences, and then we can find the loca-
tion of moving objects by taking the binary difference
of the two edge maps. After dilating the resulting dif-
ference image, we obtain the areas of possible mov-
ing objects. In this process, we also get erroneous re-
sults of moving objects due to noise. We remove
these erroneous moving objects by holding the the
possible moving objects at a certain threshold. The
moving objects, which have considerable area (count-
ing the number of pixels in the segmented moving
objects), are called the real moving objects. After
finding the real moving objects, we separately find
the optical flow in those areas to estimate the direc-
tion in which the objects are moving.

For finding the optical flow of the detected moving
objects, a method based on the multiconstraint-based
approach is presented, which evaluates optical flow
constraint (OFC) equations in the neighborhood of
each pixel. The solution is obtained from the Combi-
natorial Hough Transform (CHT) [17] and vote ac-
cumulation, which avoids drawbacks associated with
the least-squares methods. The calculation of many
points along the constraint lines is also avoided, from
the transformed slope-intercept parameter domain.
For reducing the operating time, we use the logical
operation method for computing brightness gradients.
We use edge detection and segmentation to extract the
real moving areas in the images and thus reducing the
computational time of the CHT.

The simulation results show that the proposed
method is very effective for extracting optical flow
vectors and hence recognizing moving objects in the
images. Finding the moving objects using edge detec-
tion and segmentation significantly reduces the com-
putation time. . The Boolean based edge detector
gives very thin edges and helps achieve accurate
segmentation of moving objects. Optical flow con-
straints are solved using the multiconstraint approach

and the Combinatorial Hough Transform, which
avoid the problems associated with the least-square
based optical flow methods.

This paper is organized as follows. Section 2 de-
scribes the detection of moving objects using the Boo-
lean based edge detector. Section 3 explains the extrac-
tion of velocity vectors based on the CHT and vote ac-
cumulation. Simulation results are shown in Section 4.

2. EXTRACTION OF MOVING OBJECTS

Two consecutive input images are taken from an
tmage sequence. Moving objects are extracted from
the two input images. Edges of the input images are
found with the help of the new Boolean based edge
detector. The Boolean based edge detector that is used
in the proposed algorithm is fast and accurate and
provides very thin edges. Other popular edge detec-
tors, such as Sobel, Laplacian, and so on, provide
comparatively thick edges. The differential edge im-
age, which will be explained later, provides much bet-
ter results on thin edges. The Boolean based edge de-
tector used in the algorithm is briefly explained in the
next subsection.

2.1. Boolean based edge detector

The Boolean based edge detector is based on local
operations, global operations, and Boolean algebra.
We take a 3x3 window of the original gray-level im-
age, and the local threshold is found based on the lo-
cal mean value. This local threshold is used for set-
ting a threshold for the image points, which converts
the gray-level image into binary image. The resulting
3%3 binary image window is cross-correlated with
sixteen edge-like binary patterns. We use Boolean
functions in the cross-correlation of the image win-
dow. The resulting intermediate edge map contains
true edges as well as false edges. The false edges are
generated by noise in the image and are removed by
another parallel path. In this path, the same 3x3 win-
dow of the image is globally held at a certain thresh-
old based on the variance of the window. The global
threshold is pre-selected, considering the presence of
noise in the image. A logical AND combines the re-
sulting intermediate edge map with the intermediate
edge map from local threshold. The block diagram is

Local Th. Edge Map
T, and X- 9 (Local)
Correlation

Window

(3X3) AND | Edge Map

Global Th. Edge Map
Ty B (Global)

Fig. 1. A block diagram of the Boolean based edge
detector.
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shown in Fig. 1, and each step is now explained in
detail.

2.1.1 Local threshold

The idea of global and multiple thresholds have
been applied in the various edge detectors. Not all
images can be neatly processed for edges using sim-
ple thresholds. The intensity histogram of an image
has a different picture for different types of images.
With global thresholds, we expect to see a distinct
peak in the histogram for determining the global
threshold for the entire image. But in most cases, such
peaks do not exist, and a simple threshold is unlikely
to produce a good result. In this case, an adaptive
threshold may be a better answer.

An adaptive threshold changes the threshold dy-
ramically over the image. This more sophisticated
threshold can accommodate changing lighting condi-
tions in the image, e.g., those occurring as a result of
a strong illumination gradient or shadows. With an
adaptive threshold, a threshold is calculated for each
pixel in the image. Different methods are available
for setting an adaptive threshold. One of them is cre-
ating a local threshold. To find the local threshold, we
statistically examine the intensity values of the local
neighborhood of each pixel. The statistic, which is
most appropriate, depends largely on the input image.
Simple and fast functions include the mean of the lo-
cal intensity distribution.

The local threshold (T) value for each center pixel
is selected as either

T = Mean, T = Median, T = (Max + Min)/ 2,
or T = (Max - Min)/ 2.

We use the mean value approach because it is al-
rzady calculated for the variance function. On the
margin, however, the mean of the local area is unsuit-
able as a threshold because the range of intensity val-
ves within a local neighborhood is very small and
their mean is close to the value of the center pixel.
The situation can be improved if the threshold em-
ployed is not the mean but is (mean - C) where C is a
constant. From experiments, the trade-off value of C
is equal to 5. We thus use (mean - C) as the local
threshold. For a 3x3 image window W(x,y), we calcu-
late the mean as

x=N,v=N

1
Mean t = ———— W(x, y). (1
K=y x:;‘:o (%, )

The local threshold T;(x,y) for each center pixel of
window W(x,y) is selected as T;(x,y) = (i - C) where
C is a constant. A threshold for window W(x,y) is set
as Wix,y) = 1 if Wxy) > Ti(x,y). Otherwise,
Wi(x,y) =0.

2.1.2 Boolean function (Local operation)
For edge finding, window W;(x,y) is cross-

correlated with sixteen edge-like patterns. Any pattern
that matches window W, (x,y) is called an edge at the
center of window W(x.,y), and B,(x,y), called the local
edge map, is made. The sixteen patterns are like
Prewitt compass masks. These patterns cover nearly
all possible edge patterns in every direction. The
cross-correlation of window W, (x,y) with edge pat-
terns is accomplished by Boolean functions. The Boo-
lean equation for the first mask is expressed in Eq. (2)
A logical OR is used in all similar equations to get
either one or zero at the center of window W(x,y).

BO=!B(0,0)xB(0,1)x B(0,2)x!B(1,0)x B(1,1)
xB(1,2)x!B(2,0)x B(2,1)x B(2,2).

2

2.1.3 False edge removal (global threshold)

So far in this work, false edges are detected due to
the presence of noise. We now remove the false edges
with the global threshold approach. We take a new
threshold, Ty, whose value is related to the noise level
in the image. The selection of global threshold Ty is
determined experimentally. However, its value is
moderate. In gray-scale images, a global threshold of
20 to 35 is good enough in most cases. Its value plays
no major role in the algorithm. If noise is higher, then
the value should be higher, say, 35.

The variance function has its maximum value at an
edge. So, the variance is calculated again locally for
each window W (3x3) and a threshold is set as

if O_zw > Ty, Bg(x,y) = 1, otherwise Bg(x,y) =0, and

1 x=N-1y=N-~1

o= NN ; Z;) [g(x,Y)—/l,‘._y] 3)

where g(x,y) is the intensity value of window W(x,y),
U is the mean of the neighbors (3x3) at (x,y) position,
and NXN is the window size. Bg(x,y) is called the
global edge map.

The local threshold (mean - C) gives better edge
localization, while global threshold (variance) limits
the spread of pixel intensity, above which edge pres-
ence is maximum.

A logical AND is used to combine the local edge
map B;(x,y) and the global edge map B(x.y), creating
the final edge map.

2.2. Differential edge image

The locations and areas of moving objects in the
input image sequence are found to reduce the compu-
tation time of the CHT, and vote accumulation is used
to find the optimal constraint lines of the optical flow
estimation. After using the Boolean based edge detec-
tor to get the edge maps (see Section 1), we find the
binary differential edge image from the two resulting
input edge maps to remove the background (the still
part) in the images.
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D(x,)’)=ABS(EQ(X,)’)'E;(X’)’)) (4)

where Ex(x,y), E\(x,y) are the two binary edge maps
of the input image sequence and D(x,y) is the result-
ing binary difference image. The resulting binary dif-
ference image D(x,y) gives us the possible location of
moving objects. To find the areas of moving objects,
we binary dilate the difference image D(x,y) as

DL = dilate (D) %)

where DL is the dilated image of the difference binary
image D. The dilated image DL detects the areas of
moving objects in the image sequence. The dilation of
the difference image should be enough to ensure that
the areas of the moving objects detected in the dilated
image are greater than the actual areas of the moving
objects.

Actually, in the dilated image DL, all possible
moving objects (both real and erroneous moving ob-
jects) are detected. The erroneous moving objects are
detected due to the presence of noise in the images.
We applied a method for determining thresholds to
extract the real moving objects from the dilated image
DL. We first label the moving objects in the dilated
image DL and then calculate the binary areas of each
of the moving objects. We set a threshold for the real
moving objects that have considerable area in the di-
lated image:

If AIDL(D] > Tarea
Real Moving Object (keep it),
else
Erroneous Moving Object (discard it)

where A[DL(j)] calculates the binary area (count the
number of 1s of the labeled object) of the jth labeled
object in DL and where T,,, is the threshold, the
value of which depends on the size of the input im-
ages and the distance of camera from the scene. From
experiments, the value of T, indicates that 15% of
the image gives accurate results. Fifteen percent
seems high to discard the erroneous moving objects,
but A[[)is a dilated image, so a threshold of 15% is

actually just a 5-8% threshold. We discard the erro-
neous moving objects by replacing 1s with Os in that
area. Finally, we get the image, which contains only
real moving objects in the image sequence. We then
calculate the optical flow vectors in those actual mov-
ing areas.

We presented the CHT and vote accumulation based
optical flow estimation method in an earlier paper [16].
In that paper, we used a difference image on the gray
level images. We used median operators for removing
the noise in the images. After noise removal, the process
of erosion and dilation revealed the moving objects in
the images. Median, erosion, and dilation operators are
highly time-consuming processes, which highly in-

creases the computation time. Here in this paper, we
avoid median and erosion operators, and hence reduce
the computation time. However, edge detection in-
creases the computation time but considerably less than
the median and erosion operators. We used the Boolean
based edge detector, which offers very thin and accurate
edges. The differential edge image obtains better results
on thin edges.

3. EXTRACTION OF VELOCITY VECTORS
BASED ON CHT AND VOTE
ACCUMULATION

3.1. OFC equation

Assuming that the image brightness, E(x(f), y(r),
1), is stationary with respect to time (i.e., dE/dt =0),
the flow of its features pattern can be modeled by a
sort of continuity equation:

Ecu+Ev+E=0 (6)

where E,, E,, E, represents partial derivatives of the
image brightness in the x, y and ¢ directions, re-
spectively, and where u and v correspond to dx/dt
and dy/dt , respectively, and represent the compo-
nents of the velocity vector of the features pattern
along the x and y axes, respectively, on the image
plane (the optical flow components). Eq. (6) is
usually called the OFC, and estimation methods
based on the OFC equation are commonly referred
to as gradient-based methods. The derivatives of
brightness are estimated from the discrete set of im-
age brightness measurements available.

3.2. Combinatorial Hough transform and vote
accumulations
The OFC equation cannot provide a unique solu-
tion by itself. In fact, the OFC can be regarded as the
equation of a line in the (u,v) plane.

v=mu+c ¢))

where m = —Ex/Ey is the slope and ¢ = —Et/Ey is the
intercept. Any point along this line is a possible solu-
tion for the optical flow estimation problem.

In this paper, we used the logical comparison
method for improving the gradient operation speed.
The operation algorithm for logical comparison is
outlined in Table 1.

3.2.1 Transform to the (m,c) plane

A multiconstraint solution based on the OFC fol-
lowed by the vote accumulation method identifies
the most likely solution as the point (u,v), where
most of the constraint lines lies in the vicinity of
each pixel intersect. Using this approach, the char-
acteristics of each constraint line are transformed
from the (u,v) plane to the slope-intercept plane
(m,c), where each constraint line is represented by
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a point according to Eq. (7). The requirement of a
common intersection point in the (u,v) plane of a
set of constraint lines is equivalent to the require-
ment of colinearity of their corresponding points in
the parameter plane (see Fig. 2). The estimation of
optical flow at each pixel is thus reduced to finding
the best line that matches the pattern of points
corresponding to the constraint lines (around each
pixel) in the parameter plane. The best line is the
Iine on which the largest number of points reside,
not the line that gives the minimum accumulative
distance to the points. In practice, we consider 5x5
blocks, with 2 pixels of overlap.

Table 1. The algorithm for logical comparison.

//Initialization

Start Position : x = 1, y =1;

Operation Flag : flag[255][255]1 =0
//iT not equal first image and second image in same position
for (i=0; 1<255;i++) {

for(j=0; j<255:j++) {

//t(t+1) : second image
//E(t) : first image
if(f(t+ 1) 1= (V) {
if(flag(i, j) == 0) { .
Operate E_x, E_y, E_z at (1, j);
flag(i, j)=1;

if(flag(i+1, j) == 0) {
Operate E_x, E_y, E_z at (i+i, j);
flag(i+1, )= 1;

if(flag(i, j+1) == 0) {
Operate E_x, E_y, E_z at (i, j+1);
flag(i, j+1) = 1;

}

if(flag(i+1, j+1) == 0) {
Operate E_x, E_y, E_z at (i+1, j+1);
flag(i+1, j+1)=1;

}
Jelse {
E_x=E_y=E_t=0;

(a)

(b)
Fig. 2. Constraint line parameterization; (a) uv-
plane, (b) corresponding best line in the
mc-parameter plane.

3.2.2 Transform to the (p,6) plane and vote accumu-
lation
Votes are cast using the combinatorial hough
transform. Each couple of points, (m,c;) and
(m3,c2), in the slope-intercept plane, corresponding
to a couple of constraint lines, adds a vote to a
monodimensional accumulation histogram of the
best line & as

6= tan (= 2Ty (8)
Cy —C
p[ = m[ COS(Hmux ) + C[ Sin(emax ) ) (9)

Therefore, according to the multiconstraint ap-
proach on an NxN area, (N'—N°)/2 couples of con-
straint equations exist, and thus their solutions also
exist. This could lead to an asymptotical complex-
ity equal to I°’N* (I* = IxI, or the size of the image)
and is simplified by considering only the combina-
tions of the constraint lines associated with the pix-
els in the NxN area and the constraint line of the
center of the multi-point area. Thus, (N°-I) pairs of
equations, and hence, N’ votes, are obtained. The
histogram in @ is inspected to find the most prob-
able value, 6, (the value corresponding to the
peak of the histogram). By using that value, a sec-
ond stage of N’ votes is used to define another his-
togram for the other line parameter. We computed
pmax as

1

p mean = N 2

10)

pi-

M=

i

Then search p within the defined range in the p set.

P =1 Prean @ < Pi < Prean B3i =1y N2} (11)

where ¢« is 0.4 (minimum factor) and £ is 1.5
(maximum factor) experimentally. p,,,, is the mean
of p' within the value defined in second process.

Pmax = mean (p°) . (12)

3.2.3 Computing the velocity vector

The best approximation of the best line is de-
fined by (Pux,Gnax)- Therefore, the optical flow at
each pixel can be directly derived from these line
parameters.

u=cot(@,, ),v=—Lo . (13)
sin( 6,

max )
3.3. Extracting optical flow for the moving objects
For extractingoptical flow for the moving ob-
jects, we used the mask operation between the di-
lated image having only real moving objects and
the original image sequence. Then, the information
of the moving object computed in Section 3.2 is
displayed in those areas in the image sequence
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C Input Image sequence )
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Boolean based edge detection on Boolean based edge detection on
first image second image

Binary differential edge image and
dilation

v

Removing erroneous moving
objects to make final mask for
detecting moving objects

Calculate gradients £, £, E,

v

Transformation of #v-plane to
slope-intercept mc-plane

17

Combinatorial hough transform
(p, 6) and vote accumulation

v
l Search p pu and 6 o, l

v

[ Calculate (u,v) values |

v
Display direction and
velocity vectors

Fig. 3. Diagram of the proposed algorithm.

where motion is found (see Section 2). The dia-
gram of the proposed algorithm is shown in Fig. 3.

4. SIMULATION RESULTS

For simulation, a two-frame (256x256), gray-
level sequence is used, as shown in Fig. 4. A Boo-
lean based edge detector is applied on the input
image sequence. Fig. 5 shows the step-by-step de-
tails of the Boolean based edge detector on the in-
put image. The results are obtained with conditions
of global noise T, = 20 and the constant C = 5. Fig.
5(a) shows the image after applying only the local
threshold (mean — C) on the input image. Fig. 5(b)
shows the image after applying the global thresh-
old (variance). Finally, in Fig. 5(c), the two opera-
tions are combined to get the final edge image of
the original image. Fig. 5(a) indicates that the
maximum possible edges in the image are detected.
This edge map contains both true as well as false
edges. Fig. 5(a) is obtained by using only local
threshold (mean — C) and after cross-correlation

with the sixteen edge-like patterns. Fig. 5(b)
shows the image obtained by only global threshold
and variance of the image. The variance function
limits the spread of pixel intensity, above which
edge presence is at maximum. Fig. 5(c) shows the
results of using a logical AND operation to com-
bine the two edge maps obtained from local and
global operations. It means we used both Fig. 5(a)
and Fig. 5(b), via an AND operation, to get the final
edge detection in Fig. 5(c). Fig. 5(d) illustrates the

(b)
Fig. 4. Input image sequence: (a) first image, (b)
second image.

© (d)

Fig. 5. Boolean based edge detection: (a) local
operation, (b) global operation, (c) final
edge map on first input image, (d) final
edge detection on the second input image.

edge detection on the second input image.

After getting the edge maps of the two input image
sequence with the Boolean based edge detector, we
find the differential edge image of the two edge maps
as shown in Fig. 6(a). The dilated image of the result-
ing difference image is shown in Fig. 6(b). Setting a
threhold removes the erroneous moving objects, and
the areas of the real moving objects are shown in Fig.
6(c). The proposed algorithm of optical flow using
the CHT and vote accumulation is applied on the de-
tected moving objects instead of the whole image.
The result of the final optical flow is shown in Fig.
7(a), and the direction vector of the moving object is
shown in Fig. 7(b).

The results of the proposed method, method III, are
compared with method I (Campani and Verri, 1990) and
method I (CHT and voting accumulation, 2000). The
operation time, computational complexity, and moving
object angle estimation of the three methods are com-
pared. The simulation results are shown in Table 2.

Method T uses the multi-point based algorithm, but it
also has greater computational complexity than the pro-
posed methodand has the local minimum problem at
some part of the image.

Method IT uses the CHT and vote accumulation based
optical flow estimation method [16]. The calculation of
many points along the constraint lines is avoided, taking
into consideration the transformed slope-intercept pa-
rameter domain.
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(©)

Fig. 6. Detection of the real moving objects; (a) the
differential edge image of the two input
edge maps, (b) the dilated image of the dif-
ference image, (c) the real moving objects
after removing the erroneous moving ob-
jects.

@ (b)

Fig. 7. Direction and velocity vectors; (a) optical
flow vectors using the proposed method, (b)
the direction vector of the moving object.

Table 2. Feature comparison of the three methods.

Algorithm| Complex— Opgratlon Moving Angle
ity time | distance

Campani 59
& Verri NT 843.66 | 25.1868 | 27.125
C\‘]HT & NP 286.96 | 24.2578 | 35.131

oting

Proposed 2,2

mothod | VN [151.52%% 24,6752 | 36.105

IXI: the size of the image,

NxN: the size of the neighborhood,
IyxIy: the size of the moving region,
*#; pre-filtering of the NXN region.

Method III proposes using angle estimation to
track the moving objects using base-line and optical
flow and applying Boolean edge detection to the re-
sulting difference image to find possible moving ob-
jects.

Method III offers less simulation time than the
other two methods. Edge detection, dilation, and
mask operations are time-consuming processes. But
the optical flow is found only in the detected moving
regions, so the overall computation time is much less
than with the classical methods in cases of a small
number of moving objects. However, with a large
number of moving objects, the computation time of
the proposed method will be higher. The proposed al-
gorithm works very well in cases of a small number

of large moving objects. The direction detection of
the moving object is improved if the object is well-
segmented. If object is not well-segmented, the direc-
tion detection of the moving object contains small er-
rors, because the occluded part of the moving object
misleads the algorithm.

S. CONCLUSION

The problem of tracking moving objects in a
video stream is discussed in this paper. We dis-
cussed the popular technique of optical flow for
moving object detection. Optical flow finds the ve-
locity vectors at each pixel in the entire video
scene. However, optical flow based methods re-
quire complex computations and are sensitive to
noise. In this paper, we proposed a new method
based on the Hough transform and on voting ac-
cumulation for improving the accuracy and reduc-
ing the computation time. Further, we applied the
Boolean based edge detector for edge detection.
Edge detection and segmentation are used to ex-
tract the moving objects in the image sequences
and reduce the computation time of the CHT. The
Boolean based edge detector provides accurate and
very thin edges. The difference of the two edge
maps with thin edges gives better localization of
moving objects. The simulation results show that
the proposed method improves the accuracy of
finding the optical flow vectors and more accu-
rately extracts moving objects’ information. The
process of edge detection and segmentation accu-
rately find the location and areas of the real mov-
ing objects, and hence extracting moving informa-
tion is very easy and accurate. The Combinatorial
Hough Transform and voting accumulation based
optical flow measures optical flow vectors accu-
rately. The direction of moving objects is also ac-
curately measured.
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