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Design of an Adaptive Obsever for a Class of Nonlinear Systems

Yong-Un Chei, Hyungbo Shim, Young I. Son, and Jin H. Seo

Abstract: In this paper, the problem of designing an adaptive observer for a class of nonlinear
systems with linear unknown parameters is studied. The nonlinear system to be considered con-
sists of two blocks, only one of which has measurable states. Assuming the minimum-phase
property of the error dynamics obtained after a change of coordinates and imposing some condi-
tions on the functions multiplied by unknown parameters, an adaptive observer is constructed

using an existing observer design method.
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1. INTRODUCTION

The observer design problem arises when all of the
states of a system are unknown. Besides, if the system
has unknown parameters, design effort may be fo-
cused on the different objectives. One of them is that
those uncertainties are attenuated or rejected: on the
other hand, an on-line parameter estimator can be
constructed to approximate the parameters, estimating
the system states simultaneously. The design of adap-
tive observers concerns the latter case. Observer or
adaptive observer, the state estimation error goes to
zero asymptotically, while parameter estimation er-
rors have only to be bounded for all time. When all of
the states or even only partial states are available and
the system contains uncertain parameters, the parame-
ter identifier can be thought, which guarantees the
convergence of parameter estimation error to zero.
Parameter convergence is often achieved by the per-
sistency of excitation (PE) condition of signals or, in
some cases, only the input signal.

For a linear system, an adaptive observer is con-
structed in the linear parametric model. Using the
concept of transfer function of the linear time-
invariant (LTI) system, the parametric model can be
employed so that all the signals multiplied by un-
known parameters are composed of the input/output
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signals and/or their filtered signals, which are always
available. Then, various optimization techniques or
specific structures of the system are exploited to es-
timate states and parameters.

In the nonlinear case, systems with uncertain pa-
rameters are transformed into the form whose adap-
tive observer design method is known, which usually
uses the error linearization or the SPR (Strictly Posi-
tive Real) condition according to the structure. The
Lipschitz condition of nonlinear terms also is some-
times utilized.

This paper deals with the design of an adaptive ob-
server for the nonlinear systems with the particular
structures. The system to be considered has uncertain
parameters in the dynamics whose states are unavail-
able as well as in the dynamics with known states. Af-
ter a change of coordinates, the uncertain parameters
disappear in the dynamics whose states are unmeas-
urable by virtue of the structure of the system as-
sumed. By utilizing the Lipschitz condition, the adap-
tive observer is constructed.

Before leaving this introductory section, the organi-
zation of this paper is presented. In Section 2, several
notations and definitions are given, and a brief review
of results on observer and adaptive observer is de-
scribed. Section 3 constructs an adaptive observer,
and an example is shown in Section 4, concluding in
Section 5.

2. NOTATIONS AND BRIEF REVIEW OF
PREVIOUS RESULTS

2.1. Notations and definitions
The symbol || denotes the Euclidean norm.

Given u(t)e ",a(jxm)-dimensional vector u ;s

defined as

- . i T
uj :I:u7 uT ...(u(j l))T]
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which consists of u and its derivatives up to (j-1)
times. If f{x,u) is a function, a difference function F is
defined as

Fe;x,u)= f(x+e,u)— f(x,u).

A function g(x) is said to satisfy the locally Lipschitz
condition [1] if there exists a constant L such that

lre=r)= Ll

for all x and y in some neighborhood of x,e D(f)
where D(f) denotes the domain of the function f. A
function w(z) is a positive function if w(z)> 0 for
all z. For a differentiable function V(x,y,z), V is said to
be quadratic in y with z if there are positive functions
¥, (2), ¥,(z),and ,(z) such that

2
3

v @I <V y. 2 <w ]y

ey
|p,v(xy. 2| < vl

The space of functions £,, with 1< p <o, is the set

of function h from [0,e¢) to R"satisfying
(Jo Ino)” dny!'? <.

When p =, a function A(f) in L.. satisfies
€sS-SUP ¢ .y "h(t)” < oo,

To define the zero dynamics and the minimum-phase
property, consider the following system:

t=q(2,9)+ y(z.5u,

E=a(z,E)+b(z, 5, (2)
y=¢,

where b(z,£) is locally invertible near the equilib-
num point, and states 7 and £ and functions have
reasonable dimensions. The zero dynamics for the
above system is defined as the dynamics that satisfies
the constraint y(z)=0.

Definition 1: [2] The system (2) is minimum phase
it the equilibrium point z =z, of its zero dynamics
subsystem defined above is asymptotically stable.

Finally, we define a (global) observer and a (global)
adaptive observer given a nonlinear system.

Definition 2: [3] Given a multivariable nonlinear
system

x=f(xu), x(0)=x,, xe ",ue ” 3
y=h(x), ye °,
a global observer is a dynamic system
0= ) ’a) 0 = ,a) Rr, 2
o=0,(w,y,u),00)=w,,0e R ,rzn @

x=o,(w,y,u),xe R"

such that for any x,e€R",@eR” and for any
bounded |x(@)|,|u(®)], V20, the error |x(r)—%@)|
is bounded for all ¢>0and

lim|lx(r) - 2()]| = 0.

Definition 3: [3] For the following system,

p
x=f(x)+gxu)+) 6, (x.u), )
=1
y=hx),
in which xe R",ue R'",H:[gl’...’gp]T eR’,

ye R, f(0)=0,h(0)=0,g(x,0)=0,Vxe R", a global
adaptive observer is a finite dimensional system,

=0, (,0,y(1),u()),w(0) = w,,we R ,rzn
6= o (0.6,y0)u@), 60)= 6, 6eR" (6)
= a,(@,6,y(t)u), xe R",

driven by the inputs u(f), y(¢) such that for every
x,e R",m,€ R",4,, for any value of the unknown

@)

parameter & and for any bounded |x(2)),
V20,
||w(t)1|,“é(t)n and ||x(1)-%(1)| are bounded,

V20,
tim, ,_ [|x(1)— ()| =0.

2.2. Brief review of previous results

A lot of results on observers have been produced so
far. Krener and Isidori [4] provided conditions for a
class of nonlinear systems to be transformed into the
linear observable system by coordinate transforma-
tion and output injection. In Krener and Respondek’s
work [5], for a class of nonlinear system transform-
able into the dual Brunovsky canonical form, whose
error dynamics is linear, the design method of asymp-
totic observers is explored. Rajamani [6] suggested
observers for the systems whose nonlinear term satis-
fies the Lipschitz condition through investigating the
algebraic Riccati equation. In Shim and Seo's work
[7], a brand-new recursive design method for the
class of partly lower triangular nonlinear systems,
which is general enough to include non-uniformly ob-
servable and/or detectable multi-output systems, is
proposed.

In comparison to the (non-adaptive) observer de-
sign, the class of systems considered in the research
of an adaptive observer design has been restricted in
system structures and nonlinearities. The work on the
nonlinear adaptive observer design dates from 1983,
when Bestle and Zeitz [8] attempted to transform the
nonlinear system into a canonical form convenient for
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the observer design. In the linear case, the adaptive
observer design of time-invariant system is dealt with
considerably [9]. Vargas and Hemerly [10] dealt with
the nonlinear system having disturbance as well as
uncertain parameters. As Krener and Isidori did in the
observer design, Marino and Tomei [3,11] give the
equivalent geometric conditions for a system with
linear uncertain parameters to be transformed into the
special adaptive observer form and use the SPR con-
dition to prove the stability of error dynamics and pa-
rameter convergence.

The adaptive observer form [3] is based on the
Brunovsky observer form with nonlinear input and
output injection, and the more general form of the
system, still based on the Brunovsky form, is trans-
formed into the adaptive observer form using the fil-
tered transformation [12]. Furthermore, the geometric
conditions are given for a nonlinear system with lin-
ear uncertain parameter,

»
x= f(x)+q0(x,u)+20,.q,.(x,u),xe R*,ue R”,
i=1

to be transformed into the adaptive observer form.
Then, the state estimation error converges to zero
without persistency of excitation. If the persistency of
excitation holds, the parameter estimation error also
converges to zero exponentially. Then, the MKY
Lemma [3] is applicable to the augmented error dy-
namics to derive an adaptive law.

Besancon[13] proposed a more general nonlinear
adaptive observer form and unified a existing results
so far of [3]. The nonlinear adaptive observer form,

y=a(y,{ut)+ By, ¢ u,1)6,
$=2(y,¢u0),

where y is the measured output, has a linear uncertain
parameter in the dynamics of the measured state only.
Moreover, by assuming the detectability of the sub-
system consisting of unknown states, a reduced order
observer is constructed.

Motivated by this work and by that of Shim and
Seo [7], a nonlinear adaptive observer is proposed for
a class of systems with linear unknown parameter.

)

3. NONLINEAR ADAPTIVE OBSERVER

First of all, a simple motivational example is pre-
sented.

3.1. Simple motivational example
The adaptive observer proposed is motivated by an
example in Shim and Seo [7],

X, =ux,,
%, =W’ -1x,, 8)

Y =X,

where x,x,e R are states, ye R is the output,
and ue R is the input. For the above system, an ob-
server was designed with change of coordinates:

51 :‘xl’§2 =X, —ux,

so that & -dynamics becomes

51 =x = u(‘fz +”§1),
52 =% _l'.lx.l —ux, (9)
=X, —ux

==& —(u+u)é,.

Here, we consider the system with an uncertain pa-
rameter:

X =ux,+0,
%, =(u’ —1)x, +ub, (10)
y=x,

in which feR.

The above system has an unknown parameter &
and we are going to construct an adaptive observer
for the above system. With the same change of coor-
dinates, the system is transformed as

&=x+6
=ué, —u’é, +6,
& = x, —ux, —uk, a11)
=W’ —D)x, +ub—iix, —u’x, —ub
=—X, — Ux,
=&, —(u+n)é,.

Then, the adaptive observer for the transformed
system is

3= —uzzl +uz, +6+ y(*), (12)

7, =—z,—(u+u)z,
where ¥(*) is a function with arguments of known

signals to be determined. Note that, after the change
of coordinates, the unknown parameter shows up only
in £ or z,-dynamics. Next, we find the error dy-

namics as

é =—uze,+ue2—é+}/(*), (13)

e, =—e, —(ut+ue,

where e=z-¢& . If we choose a Lyapunov-like func-
tion,

~ 1 1 1~
Ve, e, u,0) =5e12 +E€22 +502

then, the time-derivative of V is
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V =e(—u’e +ue, - 6 +y(*)
te,(~e,—(u+i)e,)+60
=—e," —tieje, —u’e’ +ey(*) —elé +éé (14
<-e,’ +%e22 +(—u’)e] +e1y(*)—elé+§§'
Selecting an
y(*)=[-10" —u’) —1le,,

adaptive law as 6=¢ and

V< —%ezz —e’.

Hence, an adaptive observer for the system (10) has
been constructed.

3.2. Adaptive observer design
The nonlinear system of interest is given by
x = filu)+ g, (x,u)8,
i, = f(nu)+g,(x,u)d, (15)
y=x,
where x, € R" and x,eR” are states; fe R’ is an
unknown constant vector; g € R™ and g,e R™

are matrix-valued functions and ue R” is the input.
Suppose that the functions f,,f,,g,, and g, are

Lipschitz in x and the input is smooth with respect to
time.

Assumption 1: There exist a nonnegative integer q,
a continuous matrix-valued function, K(x,u,), a

C' function L(x,u), a C'function V(x,e,,u,),
which is quadratic in e, with u_ , and a positive
function o,(u) such that
DV [f(xu)+ g(x,u)6]
+DeZV-[Fz(O,ez;x,u)—K(xl,ﬁq)E(O,ez;x,u):\ (16)

+DE4V ‘ E‘I S _aﬂ(ﬁz/)”eZ”2 ’

g, (xu)—K(x,u,) g (x,u)=0, a7
and
—ai(xl,ﬁq)=K(x,,17q). (18)
ox,

Before proposing an adaptive observer, a nonlinear
but simple change of coordinates is performed on the
svstem state:

S =x,6 =x—L(x,u,) .

Thus, the system (15) is represented in the trans-
formed state £:

& = (0, &+ L(x, 7)) u)+ g, (x5, &, + L(x, 7,),1)0

& = L0, 8+ Lix, i), w) + 8, (x,, 6, + L(x,,i2,),u)6
oL _
_gcl"[fl(xl’gz +L(x,,u, ),u)]

oL _ oL ..
_5{.[& x,,¢, +L(xl,uq),u)€J—£.uq.

With the assumption (17), the above transformed sys-
tem is simplified as

& = fi(x, &+ L(x, i) w) + g, (x, &, + L(x,, 0L, ), )0

& = fr(x, 6 + Lx, 1 ),u) (19)

= — JL .
KT 5y L3 ) =2,

q

Then, we consider the adaptive observer for the sys-
tem (19). The following system is proposed as an
adaptive observer for the above system (19):

4 = fi(x, 2, + L% 1 ) u) +
g (%, 2, + L(x, 1), 0)0—k(z, - &),
2, = f,(x, 2, + L(x,,u, ), u) (20)

_ _ oL
-K(x,u,)f(x,2, +L(x,,uq),u)—5ﬁ_.uq ,

q

6=-5(%,

where z is the estimate for &, @ is the estimate

for @, and a function S(*)e R? is to be determined.
Note that S(*) has arguments as known variables

and k& has only to be positive. If we know that the
sysem (20) is an adaptive observer for the system (19).
then the system (20) with

R, =2, + L(x,7,) 1)

is an adaptive observer for the original system (15).
For the system (20) to be an adaptive observer for
the system (19), the function S(*) has to be chosen.

In the next proposition, with the above arguments,
that function is found.

Theorem 1: Under Assumption 1, the system in
(20) and (21) is an adaptive observer for the system in
(15).

Proof: If we define the state estimation error
e:= z—¢, the error dynamics becomes

é, =F(0,e,;¢,&, + Lu)
+gl(poz+L’u)é_gl(x1’§2+L’u)€_kel (22)
é, =(F,—KF, )(anz;‘f|’§2 +L,u).

Let us definea C' function W for £>0 as
_ s _. & g E srei 5
W(x,e,u,,0) .—V(x,ez,uq)+5e1 e,+§0 e,

where T' is a symmetric positive-definite matrix and
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6:=6-0 isthe parameter estimation error.

Now, let us show that it is the adaptive observer.

The time derivative of W along the system (22) is
W=V(x,,e,i,)+ee é,+e0'T6
= D,rv'f +De2V [(Fz _KE)(O,32;§|’§2 +L’u)]
+D, V-, +ee] (F(0,e;8,& + Lu)
+ee”(g,(x,2, + L) - g,(x,,&, + Lu)6)
—kee| +£6'T6
<-a,@,)e;|f +ec,6ee
+ee] (—g,(x,,2, + L)@+ G (0,e,;x,,&, + L,u))
—kele|} +£6'T6.
If we choose the adaptive law as
6 =S(*) = Tg (x,,2,,u)e,,
then
W <—a,@,)e,|[ +£c, e es|
+€¢G,(0,,;x,,&, + Lu)8—kelle, ||2
<—a,@)e.|] +£(c; +d, 8D e le.] - ke e[
Therefore, for a sufficiently small ¢, we have

W <—a,(@,)e| . (23)

where ¢, is some positive function. Hence, the pro-

posed system is qualified as an adaptive observer for
system (15). O

4. AN ILLUSTRATIVE EXAMPLE

Let us consider the following system:
X ==X tux; +x,+x,0,
X, =—x, +u’x, +x,6,
%= -Dx, + @ +u—Dx, +(u+ Dx,6, (24)

X, =-x,,
y=(x| X5 )Tv

T .
where x=[x, x, x, x,] eR*, 6eR is un-

known. In the notation of Section 3,

H(xu) = (—xl fux, +x, —x, +u’x, )T ,
Ly = (@ ~Dx + @ +u=-Dx, —x,)
g (xu)=(x, )

(

g, (x,u) = o’ +u—1x, +(u+1x, O)T.

1
Let K(xl,u)z(l:) Oj,andthen L=(ux, +x, 0)

will satisfy the relation in Assumption 1,

19
a—(xl,u) K(x,,u).
ax,

Moreover, the following system

é
[_3)=FZ(O,ez;xl,xz,u)—KF,(O,ez;xl,xz,u)
2

(3 20

is exponentially stable at (e;,e,)=0 . Then, the
change of coordinates as in Proposition 1,

& %)\ Xy
is conducted so that £ -dynamics is obtained as

flz)'cl:ux3+x4+x2€
=u(&, +ul +&)+E, +E,0
=u’é +ué, +ub +&,+£,0
& =x, =u'x, +x,0
=6, +£0,
§3=x3_ux1_ ux, — X,
=X, — X, —Ux,
=g —ud &, & i
=“(”+d)§1"§2_§3_§4’
Ga =X, =—x,
==,

The adaptive observer for (24) with the form pro-
posed in Proposition 1 is

4 = uz‘fx +ug, +uz; +z, +§2é+ A2
2, =ulz, + &0+, (%),
Z =~(u+i)§ —&, — 2~ 2

Z.4 = -243

where y(*) =[7(*) yz(*)]T is a function of known
signals such as e, e, and z. Then the error dy-
namics is

é =ue, +e, —§Zé+}/l(*),

e:z = uze4 —§2é+ 72 (*) ’ (25)

€ =—€—¢,,

e, =-—e,.

~ Next, consider a positive-semidefinite function

V(e,é) = leTe+ll§2.
2 2
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Then, the time-derivative of V' along the system in
(24) and (25) is

V=eé +ee, teé, +ee, +60
=e(ue, +e,—E,0)+ey, ve,(u'z, +.f2é) +e,7,
+e,(—e, —e)+e, + 66
=—e’ —ee,—e, tuee, +ee, +u’ee,
+e, 7, (*)+e, 7, (*) (e, +¢,),0 +68.
Choosing the adaptive law as
0 = (¢, +e,)E,

and using Young's inequality,

Jab| <5 faf +2[ef k>0,

the upper bound of V is found:

; 1
V< —gef —1642 +(2u’ +2)e +2u'e’ +ey, +e,7,.

@ a®=10  ®) e@®=-2

© &0)=-30 () e@0)=20

(e) 6
Fig. 1. State and parameter estimation errors.

To make V nonposttive, we select ¥ (*) = (—2u’ —3)e
and y2(*) = (—2u* —1)e> so that

3 1,

V<el—e’——e’——¢
2 3 4
‘ 8 4

Fig. 1 shows the result of simulation for 10 seconds.
The simulation is performed under the condition that
the input wu=sins and the unknown parameter
¢=1 with the initial state estimation error

e(0)=[10 -22 =30 20]" and the parameter esti-

mation error §=11. The result of the simulation
validates that the state estimation error goes to zero,
and so does the parameter estimation error, since the
plant (24) has bounded states with the input and the
parameter assigned above for simulation.

5. CONCLUSIONS

In this paper, we have studied the adaptive observer
design for a class of nonlinear systems. The design is
based on the observer design for the system which
has the property of a detectability of subsystem. With
additional technical assumption on the function mul-
tiplied by uncertain parameters, asymptotic observers
have been constructed and all the parameter estima-
tion errors are guaranteed to be bounded.
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