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Parametric Approaches to Sliding Mode Design for Linear
Multivariable Systems

Kyung-Soo Kim and Young-jin Park

Abstract: The parametric approaches to sliding mode design are newly proposed for the class of
multivariable systems. Our approach is based on an explicit formula for representing all the slid-
ing modes using the Lyapunov matrices of full order. By manipulating Lyapunov matrices, the
sliding modes which satisfy the design criteria such as the quadratic performance optimization
and robust stability to parametric uncertainty, etc., can be easily obtained. The proposed ap-
proach enables us to adopt a variety of Lyapunov- (or Riccati-) based approaches to the sliding
mode design. Applications to the quadratic performance optimization problem, uncertain sys-
tems, systems with uncertain state delay, and the pole-clustering problem are discussed.

Keywords: Sliding mode control, Lyapunov inequality, linear matrix inequalities.

1. INTRODUCTION

For several decades, much effort has been made to
obtain the desired performances in sliding mode.
Sliding mode behavior is known to be insensitive to
the matched uncertainties or disturbances through the
reduced order dynamics. Note that sliding mode de-
sign has typically been accomplished by handling the
reduced order system obtained by nonsingular ca-
nonical transformation (e.g., see [1,2]). In the litera-
ture, many of the standard approaches to sliding mode
control have been proposed based on the reduced or-
der system (e.g., see [3,4] or, [2] and the references
therein).

Among the design methodologies in sliding mode
control, the parametric approaches based on the ap-
plication of the Riccati equation (or, Lyapunov-type
constraints) have drawn much attention since the
original effort made by Utkin and Yang [1] in which
the standard linear quadratic regulator (LQR) method
is applied to a certain reduced order system. Recently,
there have been several types of Lyapunov ap-
proaches for dealing with parameter uncertainties
1e.g., [5-71) or the pole placement problem {8]. In par-
ticular, we point out that the explicit methods in [5]
and [7], which use the Lyapunov matrix of full order,
significantly simplify the system description by han-
dling the full order system instead of the reduced or-
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der one.

The concern of the paper is to develop a systematic
method that enables, for sliding manifold design, the
adoption of a variety of multiplier theories which
have been developed for the full state feedback with
Lyapunov-type constraints. In the linear control the-
ory, many of the design objectives have been repre-
sented by the parametric constraints containing the
Lyapunov matrix, and rewritten by the linear matrix
inequalities (LMIs) using the Schur complement and
the change of variables (see [9]). Once the constraints
are stated in LMIs, the design problem can be easily
solved thanks to the convexity. For example, the un-
certain delayed systems (e.g., [10,11] and references
therein), parametric uncertain systems (e.g., [12,13]
among many), pole-clustering problems ([14]) and so
on have been effectively dealt with in Lyapunov ap-
proaches in the parameter space.

The basic idea of the paper comes from the results
in [6] and [15]. In the presence of uncertainties, it was
shown that the quadratic stabilizability condition for
full state feedback can be used for selecting the robust
sliding mode according to the parameterization tech-
nique that manipulates the Lyapunov matrix of full
order [6]. Then, the method is further extended to re-
spond to several issues raised in [15]. Based on the
previous results, it will be shown that the linear slid-
ing mode can be parameterized by partitioning and
augmenting the Lyapunov matrix without loss of gen-
erality in Section 2. Then, using the explicit formula,
several topics such as quadratic performance optimi-
zation, time-delayed systems, uncertain systems, and
the pole placement constraint will be discussed in de-
tail. Also, we address further application to the mul-
tiobjective approach in which multiple design criteria
should be met. Finally, the conclusion follows in Sec-
tion 3.
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The notations used in the paper are fairly standard.
Among them, |o] and A(e) represents the Euclid-

ean norm and the set of eigenvalues of the argument
matrix, respectively. The inequality signs for matrices
denote the sign-definiteness for the real symmetric
matrices.

2. MAIN RESULTS

2.1. Problem descriptions and preliminary
Consider the system

x=Ax+Bu+w), 1)

where xe R"and ue R" are the state and the con-
trol input, respectively, and we R’ is the distur-
bance whose element is bounded as ]wj(t)|swj,

Vje[1,1], for the known W The stabilizability of the

pair (A,B) is assumed. Also, for the simplicity of
description, suppose the system is in the regular form

[1,2]

{ X =Ax+ A, , )

X, =Ayx, +Ayx, +B,(u+w),

x n—m
where x=|: l}e{ B :| and B, is nonsingular.
X, '

Without loss of generality, consider the sliding func-
tion

s(t) = Sx, + x,, 3)

for some Se R™"™. Suppose that an appropriate
control is given to admit the reachability condition
such that s(t)"s(t)<0 for all +>0. For example,

using the control

0 Isol=0)
—B, {GAx + s+ Z(t)sign(s)}, (||s(t)|| > 0)
where  sign(s) =[sign(s,), -, sign(s,, )]T , B>0

G=[S,1,1 and Z(t)=diaglz,--,z,] for Zz, de-

fined as
1l
Z = Zl(GB)ik | W, &)
k=1

one may show s(t)=0 for all r>¢ for some f,.

Then, the system can be rewritten, when s()=0, by

{5‘1 =(4,-A,8)x, (©6)

x, =—8x,.

Note that the system state is stabilized as long as the
reduced order dynamics is stable. For convenience,

the system is considered to be in the sliding mode
when the sliding function vanishes with the stability
of (6).

In general, it has long been standard to manipulate
the reduced order system to obtain the stabilizing
sliding function coefficient because the dynamics of
reduced order is only related to sliding mode behavior.
In the paper, however, we propose a unified approach
to sliding mode by handling the full order system (1)
instead of (6) without loss of generality. The proposed
approach is advantageous in that the problem descrip-
tion is significantly simplified by manipulating the
full order system, and the synthesis can be done by
the convex approach using LMIs [9].

2.2. All stabilizing sliding function coefficients

One of the major concerns in sliding mode design
is to find a stabilizing sliding function coefficient for
the reduced order system (6). In the following, we
present an explicit formula for representing all the
possible sliding function coefficients.

Theorem 1: There exist some sliding modes if and

only if there exist some P>0 and Ke R™" satis-
fying

(A—BK) P+P(A-BK)+Q <0, )
for a ©Q>0. Moreover, for any feasible P, the ma-
trix

S=P P! (8)

12

is the stabilizing sliding function coefficient, where
P,'s are defined as

(n=m)x{n—m} (n—m)xm
R B | R
P = PT P € mx(n—m) ERan
12 22 9‘{

Proof: (Necessity) Let S be the stabilizing slid-
ing function coefficient, which guarantees the stabil-
ity of the matrix A :=A4,—A,S . Then, there should

exist some P >0 satisfying, forany Q 20,

AP +PA +Q <0. ©)
Let us define as R:=A'P.+PA +Q,, which is nega-

tive definite, for future reference.
Now, for an arbitrary P,, >0, define the matrices

F, :STP22’

Ri=PF+P,P,)R,

12> (10
and
K=[K.K,], 11
where, foran £>0,
K, =B;'{A, + P, Py A, + PALP, + PP},
K, = Bgl{Azz +P2;1131§A12 +§P2;l}
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P, B, .
Using the matrices P::[ | 1“]and K defined

12 22

above, it may be shown that, through some manipula-
tions,

R

T{ALP+PA +Q}T" :L)

0
0o 2
oo o

0 1

m

-1

where Ay =A—-BK and T =[1”"" b } ,

which implies (7) owing to the nonsingularity of T .
(Sufficiency) Define T, :=[I, ,.—F,P;'1 . Then,
pre- and post multiplying (7) by T, and 7., respec-

tively, yields
T\ .

(A= AP PY) P+P (A - AP PY)
+T.0T" <0

13)

where P =P, -P,P,'P,, which is positive definite

since P >0 . Hence, choosing as S = P,' P , the stabil-
ity of the matrix A, —A,S is guaranteed by the

Lyapunov stability theorem. This completes the proof. []

Theorem 1 shows that all admissible sliding func-
tion coefficients can be obtained from the Lyapunov
matrix of full order. Note that, in the literature, simi-
lar results utilizing the Lyapunov inequality (or Ric-
cati-type equations) have been proposed to generate
the sling function coefficients (e.g., see [8,7,5]). From
this point of view, Theorem 1 is consistent with them.
However, we point out that Theorem 1 also suggests
the necessary condition which generalizes the usage
of the Lyapunov inequality of full order in the siding
mode design.

In addition, Theorem 1 provides a useful way to
adopt a variety of Lyapunov (or Riccati) approaches
developed in linear control theory to the design of
sliding modes. This will be extenlsively dealt with in
the following sections.

Remark 1: The feasibility of Lyapunov inequality
{7) is the stabilizability of the pair (A, B) . Hence, the
stabilizability of the nominal system is the existence

of sliding modes, which extends the controllability
condition in [1].

2.3. Quadratic performance optimization

In this section, we solve the quadratic performance
optimization problem in the sliding mode based on
the parameterization technique in Theorem 1. The
problem of concern is as follows: Find the optimal
sliding function coefficient $ to minimize the quad-
ratic performance index

J(S)= fx’Qx dt (14)

where 7, is the starting time of the sliding mode,

subject to the system (6). In the following, let us pre-
sent the result:

Theorem 2: Given a stabilizing sliding function
coefficient S, the cost function (14) is bounded as

J(S)<x,(tS)TPVxI(t‘) (15)
for P satisfying S=P,'P] and the inequality (7),
where P, =P, —P,P;P;.

Proof: First, recall, from the proof for the necessity
of Theorem 1, that there should exist some P >0 and

K satisfying (7) with the relation § =P, P.. Then,
for the matrices P and K, observe that
s(@)=x, +8x = Pz; [P;;’Pzz]x
=(P;'B;")B' Px,

(16)

which implies that B'Px=0 on s()=0 for all
t>t,. Now, let us consider the derivative of a quad-

ratic function V =x"Px for t>1  as follows:

V =x"{(A- BK)' P+ P(A-BK)} x an
+2x" PB(u+w+ Kx) < —x"Ox

since B Px=0. Integrating both sides in (17) with
respect to the time, we have

[ oxdt < x ) (B, ~P,EJBDx 1) (18)

using x,(t,) =—P;' B} x,(z,) . This completes the proof. 0
Remark 2: Through some technical procedures, it
may be shown that the quadratic term x,(¢,)" P.x,(z,)

in (15) is the least upper bound. To show this, one
may manipulate the Lyapunov equation instead of the
Lyapunov inequality in (7). However, we do not dis-
cuss it here in detail.

Using the result of Theorem 2, the performance op-
timization can be redefined based on the LMIs
method [9] that utilizes the change of variables such
asYU P and L1 KP"'. Note the matrix inversion

property

Y= P—I = I:(Pll - 32132721P12 )_I *} (19)

* *

to deal with the performance bound (15), where
* positions are of no concern. Thus, we can summa-
rize the quadratic performance optimization in the
sliding mode as follows:

Quadratic performance optimization: Given
0 >0, minimize y with respect to Y>0 and L

satisfying
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AY+YA" -BL-L'B" YC
, 71<0 (20)
cly -1
ALV N @1
x(t,) UYUS

Where Q = CquT and Ul = [Infm’o(nfm)xm] :

As a matter of fact, the quadratic performance op-
timization was first introduced and solved in {1] by
adopting the LQR method in the reduced order space.
In the literature, it is noted that (i) the invertibility of
the matrix Q , (ii) the controllability of the pair
(A, B) , and (iii) the detectability of the reduced order
system depending on the matrix Q are assumed to
describe the optimization problem. On the other hand,
our approach does not require the conditions (i) and
(ii) and, moreover, the stabilizability of the pair
(A,B) is necessary instead of (ii). Note that such ad-
vantages result from the usage of the Lyapunov ine-
quality of full order.

2.4. Pole placement problem

To improve the transient response in the sliding
mode, the pole placement methods or the eigen-
structure assignments have been the major subject in
sliding mode control theory. To deal with the issue, let
us define a set

Zc,p)2{ze Cl|z+c| < p,Re(z) < 0} (22)

for positive scalars ¢ and p. Now, we introduce

the result:
Theorem 3: There exist some S so that the set of
the eigenvalues of the matrix A, —-A,S belong to

the set Z(c, p), that is,
MA, -A,S)YC Z(c, p) (23)

if and only if there exist some Ke R™" and P>0
satisfying

(A-BK)" P+cP

[ PP }o. (24)
P(A—BK)+cP pP

Also, the matrix S=P,'P; for any feasible P

guarantees the pole-clustering property (23).

Proof: To improve the readability, we start with a
rough sketch of the proof. Using the results in [14]
and [16], it is noted that the constraint (23) holds if

and only if there exist some P >0 and S satisfy-
ing

pP -
>0 (25)
P (A, —A,S)+cP, pP,

where * denotes the transpose of the off-diagonal

term for saving the space. Hence, we should show the
equivalence between the feasibility of (24) and (25).

T
(Sufficiency:(25) « (24)) Define asT = {#7} ,

r

whereT =[1
plying (24) by T and T', respectively, leads to
(25) by the choice of S =P, P! .

(Necessity: (25) — (24)) Given the sliding function
coefficient § and any matrix P, >0, define the

-P,P;']. Then, pre- and post multi-

n—m?

matrices
B, =S"P,,B, =P +P,P, P;. (26)

Also, consider the matrices

A
o o |o 1,0

T — |:Iu‘m B [12P2; | 0

O | Invm - RZ PZ_Zl :l’

which would make the matrix [H”,T7"} nonsingular.
For simplicity, let L., and L, denote the left

(25)

hand sides of (24) and (25), respectively. In the fol-
lowing, with the above matrices (also,

B Byfy o
P= ), it will be shown that L,, >0 can

T
R, P,
be satisfied for some matrix K . To this end, through
some manipulations, note that

H H] [|HLH" | HL,T"|
Lz, =

T T
T T TLH' | TLT" |
PP, N |0 ALR] Q@7
N pP,|M 0
Lo M
L(ZS)
PrAIZ 0

where

N= A12P|2 +(Ay — B,K,) By +cP,,
M =R§(AH_A12S)+P22(A21—BZK1) (28)
_Pzz(Azz _Bsz) .
Note that N and M can be made for arbitrarily
values thanks to K, and K,. Since L, >0, the

positive definiteness of the transformed quantity in
(27) is equivalent to that of the matrix

P N T T
P ;2 _ 0 A12Pr L(_zli) 0 A12Pr (29)
N pR, | iMoo | ®IM o

which can be always positive definite by selecting
proper P, and N . For example, choose

M =N=0and a sufficiently large P, >0. Then, it
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may be shown that L ,, > 0. This completes the proof. (J

Note that the inequality (24) is also the necessary
and sufficient condition for the existence of the full
state feedback which places the closed loop poles in
the specified region such that A(A—-BK) c Z(c, p) .

2.5. Application to time delay systems

The time delayed systems has been of concern in
some literature (e.g., see [2] and the references
therein). While the complete solution remains un-
solved yet, we here propose a new method based on
the parametric approach.

Consider the system

()= Ax(1)+ A, x(t =)+ Blu+w), (30)

where 0=7<7max for the known 7, . Also, with-

out loss of generality, we assume that the system ex-
ists in the canonical form similar to (6).

We start with the control law (4), instead of (5),
having

z, = Z":‘(GA‘, )%+ |(GB), |7, 31

j=1

, which renders the

nnnnn i ‘x_/ &)
reachability condition. To see this, rewrite the sliding
function behavior as
$=Gx

=GAx+GA,x(t —7) + B,u + GBw.

(32)

Then, for the Lyapunov functional candidate
V,=1s"s, it can be shown that V, <-A|s|* using
the fact

n

;X E=17)

(GA)

i=1

s'GA,x(t—1) = i s,
' (33)

<Y'ls| 3G, % o).
i=] j=I
For addressing the existence of sliding modes, we
rely upon the following lemma.
Lemma 1: The system

i=Ax+Ax(t-r) 34

is quadratically stable if there exist some P >0 and
H >0 satisfying

T
[ACP+PAC+H PAd]<0. 35)

AP -H

The above lemma has been well known in the lit-
erature to handle the systems with uncertain state de-
lay even though it may cause conservatism since the
maximum amount of delay is not reflected in the ine-
quality constraint. Note that the quadratic stability of

(34) can be shown by using the Lyapunov-Krasovskii
functional (see [9] and the original reference therein):

V=x"Px+ [ x(6) Hx(6)do (36)

forsome P>0 andH >0.
We can now present the result:
Theorem 4: There exist some sliding modes if

there exist some P>0, H>0 and KeR™" sat-
isfying
[(A—BK)TP+P(A—BK)+H+Q PA,

<0 (@37
AP —H} GP

for a matrix @ >0. Moreover, the sliding function
coefficient is given by S=P,'P, for any feasible
P in (37). With the sliding function coefficient S,
it holds that

J(S)<x, ) Px(t) (38)

where P, =P, -F,P,'R;.
Proof: For 7 (as defined in (13)), define the

0

plying (37) by T and T', respectively, it follows
that

0
augmented matrix T :=|i } Pre and post multi-

r

<0 (39
AP, —T,HT,T} &9

{AZ P+PA+T(Q+H)T] PA,,
where A =A, "Alsz_zlPé and A, =4, —Ad.IZPZ_Zl
P, which implies, from Lemma 1, the stability of
the system

E=AL+A, L) (40)

Note that (40) is equivalent to the system behavior in
the sliding mode determined by S = P,,' P} .

Now, the performance issue can be addressed ac-
cording to the similar argument through (16)-(17).
That is, using the fact that B"Px=0 in the sliding
mode, one may show

Vg A,ZP+}T>AK+H PA, .
AjP -H @1

<-x"Qx

where A, = A—BK and n=[x(t)",x(t—r)"|'. Then
integrating both sides with respect to the time results
in (38). This completes the proof. 0

It is noted that the inequality (37) can be rewritten
by an LMI using the change of variables Y :=P~',

L=KP"' and H:=PHP as follows:
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AY+YA"-BL-L'B"+H YC, AY
cly -1 0 |<0 (42)
YA} 0 -H

Hence, combining with (21) in order to bound the
quadratic performance index, the sliding mode can be
designed based on the guaranteed cost control
through the convex search.

2.6 Parametric uncertain systems

Sliding mode design for parametric uncertain sys-
tems has been addressed in [7] based on the Riccati
approach. However, we restate the issue here for the
completeness of the paper and the introduction of the
recently developed quadratic stability condition,
which uses the symmetric and the skew symmetric
scales.

Consider the uncertain system

X=(A+AA)x+Bu+w) 43)

where AA represents the real parametric uncertain-
ties of the form

AA = MF(t)N (44)

where M,N" e R™ and F(1)=diag[d,(t), -,5,(1)]
for the Lebesgue measurable functions &, such that
|6,(1)<1|, Vr20. As to the reachability issue, it has

been shown in [7] that the reachability condition is
met by the control (4) with

o= |Gy, (N [+ Y |GB) |7, @5)
~ =1

This can be proven by showing that the derivative of
the quadratic function V =1s"s is made to be nega-
tive.

Now, to address the existence of sliding modes, the

quadratic stability should be considered a priori.
Lemma 2: The system

X=(A +AA)x (46)

is quadratically stable if there exist some P>0,
XeS, A and UeS,  satisfying,

sym skew

ATP+PA_+ PMXM'P

. 47)
+HN+PMUYX YN+PMUTY <0

where the sets for the scales are defined as follows:

S S{XI|XF=FX,X >0},
{W ! ~° (48)

Spew S{UIVUF =FU,U =-U"}.

The condition has been derived in [17] based on
the S -procedure and the realness of uncertainties,
and applied to the L,disturbance attenuation problem

[18]. See Appendix for a proof using the quadratic
bounding technique which is simpler than those in the
references. It is noted that the usage of the skew
symmetric scales (as well as the symmetric scales)
effectively reduces the design conservatism in the
presence of the multi-rank uncertain parameters (i.e.,
the repeated uncertain parameters in F () ).

Theorem 5: There exist sliding modes if there ex-
ist some P>0, KeR™, XeS._ and UeS

sym skew
satisfying

(A-BK) P+ P(A-BK)+Q+PMXM'P

(49)
+HN+PMUYX (N+PMUT)" <0.

for a matrix Q> 0. Moreover, the matrix S=P,'P!,

for any feasible matrix P, is the stabilizing sliding
function coefficient and over bounds the quadratic
performance index as follows:

L X' Qxdr < x,(t,)" Px,(1,) (50)

where P, =P, ~R,P;'F}.

Proof: In order to save space, we refer to [7] for
the detailed procedures. The rough sketch of the proof
is as follows. First, pre and post multiply 7, and

T' (defined in (13)) by (49), respectively. Then,
through some manipulations, one may show the quad-
ratic stability of the reduced order uncertain system
by choosing S = P,' P . Also, the relation (50) can be

22 712
shown by following the similar steps done in the
proof of Theorem 2. This completes the proof. [

It is noted that Theorem 5 is an extension of Theo-
rems 1 and 2 to uncertain systems. It can be observed
that Theorem 5 would be equivalent to the results of
Theorems 1 and 2 in the absence of uncertainties, i.e.,
M =N =0. Also, in practice, the inequality (49) can
be rewritten by an LMI using the change of variables
and the Schur complement [9] as follows:

YAT+AY-BL-L'B" +M xM" * *
cry -1 * |<0 (51
N'Y+UM" 0 -X

where Y =P"',L=KP™", Q=C,C, . Consequently,
the concept of the quadratic performance optimiza-
tion in the sliding mode (discussed in §2.3) can be
extended to the guaranteed cost optimization [13] by
replacing (20) with (51) as follows:

Guaranteed cost optimization: Given 0>0,

minimize ywith respectto Y >0, L, Xe S, and
Ue S satisfying (51) and (21).

skew

2.7. Further remarks
Through the previous discussions, we have shown
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the common nature of the sliding mode structure for
several types of problems. That is, as long as the full
state feedback problem is formulated by the paramet-
ric approach (utilizing the Lyapunov matrix) and
solvable, the sliding mode can be immediately de-
signed by manipulating certain parts of the Lyapunov
matrix. To be specific, suppose that there exist P >0

and K satisfying
(A-BK) P+ P(A-BK)+ F(P)<0 (52)

where F constrains the desired objective. Then, the
sliding mode can be given by §=P,'P, with no
loss of generality. Hence, a variety of the results de-
veloped in the linear control theory can be adopted
for the sliding mode design. Also, the problem de-
scription gets significantly simplified by handling the
original full order system instead of the reduced one.
In addition, the above property enables us to apply
the multiobjective approach (e.g., see [16], [19]) to
the sliding mode design with relative ease. To this end,
consider, for example, the quadratic performance op-
timization with the pole placement constraint. Com-
bining the results in Theorems 2 and 3 with the as-
sumption that the Lyapunov matrices ( P's of (7) and
(24)) are common, it is easy to have the result:
Corollary 1: Given some ¢, p>0 and Q02>0,

there exist some sliding modes § such that
(i) MA,-A,S)c Z(c,p),
i) [ Oxdi <y,

if there exist some Y >0and L satisfying inequali-
ties

T _ TRl
pY YAT-L'B'+e¥ | o a3
AY —BL+cY pY
AY +YA"-BL-L'B" [IC,
. >0, (54)
c)Y -1
T
AEA N (55)
x(t,) UYU,

Then, the admissible sliding function coefficient is
given by S=P,'P. forany feasible ¥ (:=P").

The above shows how the various objectives can
be effectively combined in a design problem. First,
note that the formulation has the convexity for the de-
sign parameters, which can be solved using the LMIs
technique. Also, the proposed approach does not re-
quire handling the reduced order system that has
made the design complicated. As a result, a variety of
results in the parametric approaches (using the
Lyapunov matrices) can be adopted for the sliding
mode design in the framework of the multi-objective

approach. Further applications remain as an active
area of research.

3. CONCLUSIONS

In this manuscript, explicit formulas for sliding
mode design have been newly proposed based on the
parametric approaches that use the Lyapunov matri-
ces of full order. It has been shown that the sliding
mode can be designed by combining the partitions of
the Lyapunov matrix that constrains the design objec-
tive. Taking advantage of the construction technique,
many of results that have been developed for the full
state feedback synthesis in the linear control theory
are shown to be applicable to sliding mode design.
Through the paper, we addressed the issues on the
quadratic performance optimization, the state delayed
systems, parametric uncertain systems, and the pole
placement problem.

APPENDIX
Proof of Lemma 2
Proof: For the quadratic function V =x'Px,
where P >0, the quadratic stability can be proven by
showing V <0. To do this, the following bounding
technique is crucial:

PMFN+N"FM"P=PMFH+H FM'P (56)
SPMXM'P+H X'H 57)

where H =N+UM'P . Note that (56) is established
thanks to the commuting property and the skew
symmetricity, i.e., FU =UF=-U"F . Also, (57) is
the standard bounding technique for the block-
diagonal uncertainties (e.g. see [7]). This completes
the proof. [
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