A NOTE ON FUZZY SEMI-IRRESOLUTE AND STRONGLY IRRESOLUTE FUNCTIONS

SEONG HOON CHO AND JAE KEUN PARK

ABSTRACT. In this paper, we have some characterizations of fuzzy semi-irresolute and strongly irresolute functions.

1. Introduction

In 1989, M. N. Mukherjee and S. P. Sinha [12] introduced the notion of fuzzy irresolute function and investigated some of its properties. Since then, modified fuzzy continuous functions has been extensively studied.

S. Malaker [10] introduced the concepts of fuzzy semi-irresolute function and fuzzy strongly irresolute function, and obtained several characterizations of these functions.

The purpose of this paper is to give several characterizations of fuzzy semi-irresolute and fuzzy strongly irresolute functions. We obtain some of these characterizations through the introduction of type of convergences for fuzzy nets that we call RN-convergence and SN-convergence. Moreover, we obtain a characterization of RN-convergence through the concept of fuzzy regular semi-open sets, and then we obtain a characterization of fuzzy semi-irresolute functions.

2. Preliminaries

For an ordinary set X and the closed unit interval I = [0,1] of the real line, a fuzzy set A of X is a mapping from X into I. Throughout the paper, by (X,T) and (Y,T^*) (or simply X and Y) we shall mean fuzzy topological spaces in Chang's sense [2].

Received September 6, 2001.

2000 Mathematics Subject Classification: 54B05, 54B10, 03E72.

Key words and phrases: fuzzy regular semi-open sets and fuzzy semi- θ -open sets.

A fuzzy singleton [13] with support x and value α , where $0 < \alpha \le 1$, is denoted by x_{α} . A fuzzy singleton x_{α} is said to belong to a fuzzy set $A(\text{written } x_{\alpha} \in A)$ if $\alpha \le A(x)$. By 0_X and 1_X we will mean the constant fuzzy sets taking on respectively the values 0 and 1 on X.

For fuzzy sets A and B in X, we say that B includes A(written $A \leq B$) if $A(x) \leq B(x)$ for each $x \in X$. For a fuzzy set A in X, the notations Cl(A), Int(A) and $1_X - A$ will respectively stand for the fuzzy closure, fuzzy interior and complement of A. For fuzzy sets A and B in X, we write AqB to mean that A is quasi-coincident [13] with B. B is a quasi-neighborhood [13](simply, q-nbd) of A if there exists a fuzzy open set U such that $AqU \leq B$.

A fuzzy set A in X is called fuzzy semi-open set [1] if there exists a fuzzy open set B such that $B \leq A \leq Cl(B)$, or equivalentely $A \leq Cl(Int(A))$. The complement of a fuzzy semi-open set is called a fuzzy closed set. The intersection of all fuzzy semi-closed sets containing A is called the fuzzy semi-closure [7] of A and is denoted by ${}_sCl(A)$. The union of all fuzzy semi-open sets contained in a fuzzy set A in X is called the fuzzy semi-interior of A and is denoted by ${}_sInt(A)$.

A fuzzy set A is fuzzy semi-closed if and only if $A = {}_{s}Cl(A)$ and is fuzzy semi-open if and only if $A = {}_{s}Int(A)$.

A fuzzy set A in X is called a semi-q-nbd [7] of a fuzzy singleton x_{α} in X if there exists a fuzzy semi-open set V in X such that $x_{\alpha}qV \leq A$. It is well know that [7] the semi-closure ${}_sCl(A)$ of a fuzzy set A in X is the union of all fuzzy singleton x_{α} such that every fuzzy semi-open semi-q-nbd of x_{α} is q-coincident with A. A fuzzy singleton x_{α} is said to be a fuzzy semi- θ -cluster point [14] of a fuzzy set A in X if the fuzzy semi-closure of every fuzzy semi-open semi-q-nbd of x_{α} is q-coincident with A. The union of all fuzzy semi- θ -cluster points of A is called the semi- θ -closure [14] of A and is denoted by ${}_sCl_{\theta}(A)$. A fuzzy set A in X is called fuzzy semi- θ -closed [14] if $A = {}_sCl_{\theta}(A)$, and complement of a fuzzy semi- θ -closed set is fuzzy semi- θ -open set.

For a fuzzy set A in X, $A \leq {}_{s}Cl(A) \leq {}_{s}Cl_{\theta}(A)$ and hence each fuzzy semi- θ -closed set is a fuzzy semi-closed.

A fuzzy set A in X is called fuzzy regular semi-open [11] if there exists a fuzzy regular open set U such that $U \leq A \leq Cl(U)$. It is clear that every fuzzy regular semi-open set is a fuzzy semi-open set.

In the following, we provide some Lemmas which are going to be used in the sequel.

LEMMA 2.1. For a fuzzy set A in X, we have that

- (1) $_{s}Int_{\theta}(1_{X} A) = 1_{X} _{s}Cl_{\theta}A$,
- (2) ${}_{s}Cl_{\theta}(1_{X} A) = 1_{X} {}_{s}Int_{\theta}A.$

LEMMA 2.2 [10]. For a fuzzy semi-open set A in X, ${}_{s}Cl(A) = {}_{s}Cl_{\theta}(A)$.

LEMMA 2.3 [3]. For a fuzzy set A in X, the following statements are equivalent:

- (1) A is fuzzy regular semi-open;
- (2) $1_X A$ is fuzzy regular semi-open;
- (3) $A = {}_sCl({}_sInt(A));$
- (4) A is fuzzy semi-clopen;
- (5) there exists a fuzzy regular open set U in X such that $U \leq A \leq Cl(U)$.

From Lemma 2.1, 2.2 and 2.3, we get the following result.

LEMMA 2.4. A fuzzy set A in X is a fuzzy regular semi-open set if and only if A is a fuzzy semi- θ -clopen set in X.

LEMMA 2.5 [3]. For a fuzzy semi-open set A in X, the fuzzy set ${}_sCl(A)$ is a fuzzy regular semi-open set in X.

3. Characterizations

DEFINITION 3.1 [10]. A function $f: X \to Y$ is said to be fuzzy semi-irresolute(resp. fuzzy strongly irresolute) if for any fuzzy singleton x_{α} in X and each fuzzy semi-open set V containing $f(x_{\alpha})$, there exists a fuzzy semi-open set U containing x_{α} such that $f(U) \leq {}_{s}Cl(V)$ (resp. $f({}_{s}Cl(U)) \leq V$).

In this section, we obtain several characterizations of fuzzy semiirresolute and fuzzy strongly irresolute functions.

THEOREM 3.1. For a function $f: X \to Y$, the following statements are equivalent:

- (1) f is fuzzy semi-irresolute;
- (2) for each fuzzy singleton $x_{\alpha} \in X$ and each fuzzy regular semi-open set V containing $f(x_{\alpha})$, there exists a fuzzy regular semi-open set U containing x_{α} such that $f(U) \leq V$;
- (3) for each fuzzy singleton $x_{\alpha} \in X$ and each fuzzy regular semi-open set V containing $f(x_{\alpha})$, there exists a fuzzy semi-open set U containing x_{α} such that $f(sCl(U)) \leq V$.

- PROOF. (1) \Longrightarrow (2). Let x_{α} be a fuzzy singleton in X and V be a fuzzy regular semi-open V containing $f(x_{\alpha})$. Then V is a fuzzy semi-open set. By Theorem 2.9 [10], there exists fuzzy semi-open set G containing x_{α} such that $f({}_{s}Cl(G)) \leq {}_{s}Cl(V) = V$. Then $U = {}_{s}Cl(G)$ is a fuzzy regular semi-open set and $f(U) \leq V$.
- $(2) \Longrightarrow (3)$. Let x_{α} be a fuzzy singleton in X and V be a fuzzy regular semi-open set in Y containing $f(x_{\alpha})$. By (2), there exists a regular semi-open set U containing x_{α} such that $f(U) \leq V$. Then U is a fuzzy semi-clopen set and $f({}_{s}Cl(U)) \leq V$.
- $(3) \Longrightarrow (1)$. Let x_{α} be a fuzzy singleton in X and V be a fuzzy semi-open set V containing $f(x_{\alpha})$. Then ${}_{s}Cl(V)$ is a fuzzy regular semi-open set containing $f(x_{\alpha})$, and so there is a fuzzy semi-open set U containing x_{α} such that $f({}_{s}Cl(U)) \leq {}_{s}Cl(V)$. From Theorem 2.9 [10], f is semi-irresolute.

THEOREM 3.2. For a function $f: X \to Y$, the following statements are equivalent:

- (1) f is fuzzy semi-irresolute;
- (2) for each fuzzy singleton x_{α} in X and each fuzzy semi- θ -clopen set V containing $f(x_{\alpha})$, there exists a fuzzy semi- θ -clopen set U containing x_{α} such that $f(U) \leq V$;
- (3) $f^{-1}(V)$ is fuzzy regular semi-open for every fuzzy regular semi-open set V in Y;
- (4) $f^{-1}(V) \leq {}_sInt_{\theta}(f^{-1}({}_sCl_{\theta}(V)))$ for every fuzzy semi-open set V in Y;
- (5) ${}_sCl_\theta(f^{-1}({}_sInt_\theta(V))) \le f^{-1}(V)$ for any fuzzy semi-closed set V in Y:
- (6) ${}_{s}Cl_{\theta}(f^{-1}(V)) \leq f^{-1}({}_{s}Cl_{\theta}(V))$ for any fuzzy semi-open set V in Y.
 - PROOF. (1) \iff (2). It follows from Lemma 2.4 and Theorem 3.1.
- $(2) \Longrightarrow (3)$. Let V be a fuzzy regular semi-open set in Y. By Theorem 2.6 [10], ${}_sCl(f^{-1}(V)) \le f^{-1}({}_sCl_{\theta}(V)) = f^{-1}({}_sCl(V)) = f^{-1}(V)$ and hence $f^{-1}(V)$ is fuzzy semi-closed. Since $1_Y V$ is fuzzy regular semi-open, $1_X f^{-1}(V) = f^{-1}(1_Y V)$ is also fuzzy semi-closed. Therefore, $f^{-1}(V)$ is a fuzzy regular semi-open set.
- $(3) \Longrightarrow (4)$. Let V be a fuzzy semi-open set in Y. Then ${}_sCl_{\theta}(V)$ is fuzzy regular semi-open set, and so $f^{-1}({}_sCl_{\theta}(V))$ is a fuzzy regular semi-open set and fuzzy semi- θ -open set. Since $f^{-1}(V) \leq f^{-1}({}_sCl_{\theta}(V))$, $f^{-1}(V) \leq {}_sInt_{\theta}f^{-1}({}_sCl_{\theta}(V))$.
 - $(4) \Longrightarrow (5)$. Let V be a fuzzy semi-closed set in Y. Then $1_Y V$ is

fuzzy semi-open set in Y. By (4) and Lemma 2.1, we have that

$$\begin{aligned} &1_{X} - f^{-1}(V) \\ &= f^{-1}(1_{Y} - V) \\ &\leq {}_{s}Int_{\theta}(f^{-1}({}_{s}Cl_{\theta}(1_{Y} - V))) \\ &= {}_{s}Int_{\theta}(f^{-1}(1_{Y} - {}_{s}Int_{\theta}(V))) \\ &= {}_{s}Int_{\theta}(1_{X} - f^{-1}({}_{s}Int_{\theta}(V))) \\ &= 1_{X} - {}_{s}Cl_{\theta}(f^{-1}({}_{s}Int_{\theta}(V))). \end{aligned}$$

Therefore, ${}_sCl_{\theta}(f^{-1}({}_sInt_{\theta}(V))) \leq f^{-1}(V)$.

(5) \Longrightarrow (6). Let V be a fuzzy semi-open set in Y. Then ${}_sCl(V)$ is fuzzy regular semi-open and so ${}_sCl(V)$ is semi- θ -clopen. By (5),

$$_sCl_{\theta}(f^{-1}(V)) \leq _sCl_{\theta}(f^{-1}(_sCl(V))$$

$$= {}_{s}Cl_{\theta}(f^{-1}({}_{s}Int_{\theta}({}_{s}Cl(V)))) \le f^{-1}({}_{s}Cl(V)) = f^{-1}({}_{s}Cl_{\theta}(V)).$$

- (6) \Longrightarrow (3). Let V be a fuzzy regular semi-open set in Y. Then V is fuzzy semi-clopen. By (6), ${}_sCl_\theta(f^{-1}(V)) \leq f^{-1}({}_sCl_\theta(V)) = f^{-1}({}_sCl(V)) = f^{-1}(V)$. So $f^{-1}(V) = {}_sCl_\theta(f^{-1}(V))$ and $f^{-1}(V)$ is a semi- θ -closed set. Since V is a fuzzy regular semi-open set, $1_Y V$ is a fuzzy regular semi-open set. Thus $f^{-1}(1_Y V) = 1_X f^{-1}(V)$ is a semi- θ -closed set, and hence $f^{-1}(V)$ is a semi- θ -open set. Therefore, $f^{-1}(V)$ is a semi- θ -clopen set, and hence regular semi-open set.
- $(3) \Longrightarrow (1)$. This implication immediately follows from Theorem 2.9 [10], Lemma 2.3 and 2.4.

From Lemma 2.2, 2.4, 2.5 and Theorem 2.9 [10], we get the following result.

COROLLARY 3.1. A function $f: X \to Y$ is semi-irresolute if and only if for each singleton x_{α} in X and each semi-open set V containing $f(x_{\alpha})$, there exists a fuzzy semi- θ -open set U containing x_{α} such that $f({}_{s}Cl_{\theta}(U)) \leq {}_{s}Cl(V)$.

From Theorem 2.2 and 2.9 of [10], we have the following result.

PROPOSITION 3.3. A function $f: X \to Y$ is semi-irresolute if and only if for each singleton x_{α} in X and each semi-q-nbd V of $f(x_{\alpha})$, there exists a fuzzy semi-q-nbd U of x_{α} in X such that $f(sCl(U)) \leq sCl(V)$.

THEOREM 3.4. For a function $f: X \to Y$, the following statements are equivalent:

- (1) f is fuzzy semi-irrsolute;
- (2) ${}_sCl_\theta(f^{-1}(B)) \le f^{-1}({}_sCl_\theta(B))$ for any fuzzy set B in Y;
- (3) $f({}_{s}Cl_{\theta}(A)) \leq {}_{s}Cl_{\theta}(f(A))$ for any fuzzy set A in X;
- (4) $f^{-1}(F)$ is fuzzy semi- θ -closed for every fuzzy semi- θ -closed F in Y;
- (5) $f^{-1}(V)$ is fuzzy semi- θ -open for every fuzzy semi- θ -open V in Y.
- PROOF. (1) \Longrightarrow (2). Let B be any fuzzy set in Y and $x_{\alpha} \not\in f^{-1}({}_sCl_{\theta}(B))$. Then $f(x_{\alpha}) \not\in {}_sCl_{\theta}(B)$, and so there is a fuzzy semi-open semi-q-nbd V of $f(x_{\alpha})$ such that ${}_sCl(V) \not AB$. By Proposition 3.3, there exists a semi-q-nbd U of x_{α} such that $f({}_sCl(U)) \leq {}_sCl(V)$. Thus $f({}_sCl(U)) \not AB$, and so $f({}_sCl(U)) \leq 1_Y B$ and ${}_sCl(U) \leq f^{-1}(1_Y B)$. Therefore, ${}_sCl(U) \not Af^{-1}(B)$ and $x_{\alpha} \not\in {}_sCl_{\theta}(f^{-1}(B))$.
- $(2) \Longrightarrow (3)$. Let A be a fuzzy set in X. Then ${}_sCl_{\theta}(A) \leq {}_sCl_{\theta}(f^{-1}(f(A)))$. By (2), ${}_sCl_{\theta}(f^{-1}(f(A))) \leq f^{-1}({}_sCl_{\theta}(f(A)))$. Thus $f({}_sCl_{\theta}(A)) \leq f(f^{-1}({}_sCl_{\theta}(f(A)))) \leq {}_sCl_{\theta}(f(A))$.
 - $(3) \Longrightarrow (4)$. Let F be a fuzzy semi- θ -closed set in Y. Then

$$f({}_{s}Cl_{\theta}(f^{-1}(F))) \le {}_{s}Cl_{\theta}(f(f^{-1}(F))) \le {}_{s}Cl_{\theta}(F) = F.$$

Thus ${}_sCl_{\theta}(f^{-1}(F)) \leq f^{-1}(F)$ and $f^{-1}(F)$ is a fuzzy semi- θ -closed set in X.

- $(4) \Longrightarrow (5)$. This implication is obvious.
- (5) \Longrightarrow (1). It follows from Theorem 2.6 [10], because each semi- θ -open set is a semi-open set.

THEOREM 3.5. A function $f: X \to Y$ is fuzzy strongly irresolute if and only if for each fuzzy singleton x_{α} in X and each fuzzy semi-open set V containing $f(x_{\alpha})$, there exists a fuzzy regular semi-open set U containing x_{α} such that $f(U) \leq V$.

PROOF. It follows immediately from Lemma 2.3 and 2.5.

DEFINITION 3.2 [9]. Let (D, \geq) be a directed set. A fuzzy net in a fuzzy space X is a map $\phi: D \to \mathcal{B}_F(X)$, where $\mathcal{B}_F(X)$ is the collection of all fuzzy singletons in X. We also denote ϕ by $\{\phi(d): d \in D\}$ or $(\phi(d))$.

DEFINITION 3.3. A fuzzy net $(\phi(d))$ in a fuzzy space X is said to θN - converges to a fuzzy singleton x_{α} in X if for each fuzzy open set U containing x_{α} , there exists d_0 such that $\phi(d) \in Cl(U)$ for all $d \geq d_0$.

DEFINITION 3.4. A fuzzy net $(\phi(d))$ in a fuzzy space X is said to RN-converges to a fuzzy singleton x_{α} in X if for each fuzzy semi-open set U containing x_{α} , there exists d_0 such that $\phi(d) \in {}_sCl(U)$ for all $d \geq d_0$.

DEFINITION 3.5. A fuzzy net $(\phi(d))$ in a fuzzy space X is said to SN-converges(resp. S'N-converges) to a fuzzy singleton x_{α} in X if for each fuzzy semi-open(resp. semi- θ -open) set U containing x_{α} , there exists d_0 such that $\phi(d) \in U$ (resp. $\phi(d) \in {}_sCl_{\theta}(U)$) or all $d \geq d_0$.

It is easy to see that the following Lemma holds.

LEMMA 3.1. For a fuzzy net $(\phi(d))$ in a fuzzy space X,

- (1) if $(\phi(d))$ RN-converges to x_{α} , then $(\phi(d))$ θ N-converges to x_{α} .
- (2) if $(\phi(d))$ SN-converges to x_{α} , then $(\phi(d))$ S'N-converges to x_{α} .
- (3) if $(\phi(d))$ S'N-converges to x_{α} , then $(\phi(d))$ RN-converges to x_{α} .

THEOREM 3.6. For a function $f: X \to Y$, the following statements are equivalent:

- (1) f is fuzzy semi-irresolute;
- (2) for each fuzzy singleton x_{α} in X and each fuzzy net $(\phi(d))$ in X which RN-converges to x_{α} , the net $(f(\phi(d)))$ RN-converges to $f(x_{\alpha})$;
- (3) for each fuzzy singleton x_{α} in X and each fuzzy net $(\phi(d))$ in X which S'N-converges to x_{α} , the net $(f(\phi(d)))$ RN-converges to $f(x_{\alpha})$.
- PROOF. (1) \Longrightarrow (2). Let x_{α} be a fuzzy singleton in X and let $(\phi(d))$ be a fuzzy net in X such that $(\phi(d))$ RN-converges to x_{α} . Let V be a fuzzy semi-open set containing $f(x_{\alpha})$. Since f is semi-irresolute, there exists a fuzzy semi-open set U containing x_{α} such that $f({}_sCl(U)) \leq {}_sCl(V)$. Since $(\phi(d))$ RN-converges to x_{α} , there exists d_0 such that $\phi(d) \in {}_sCl(U)$ for all $d \geq d_0$. Hence $f(\phi(d)) \in {}_sCl(V)$ for all $d \geq d_0$. Thus $(f(\phi(d)))$ RN-converges to $f(x_{\alpha})$.
- $(2) \Longrightarrow (3)$. Let x_{α} be a fuzzy singleton in X and let $(\phi(d))$ be a fuzzy net in X such that $(\phi(d))$ S'N-converges to x_{α} . By Lemma 3.1, $(\phi(d))$ RN-converges to x_{α} . By (2), $(f(\phi(d)))$ RN-converges to $f(x_{\alpha})$.
- (3) \Longrightarrow (1). Suppose that f is not fuzzy semi-irresolute. Then there exist a fuzzy singleton x_{α} in X and a fuzzy semi-open set V containing $f(x_{\alpha})$ such that $f(U) \not\leq {}_{s}Cl(V)$ for all fuzzy semi- θ -clopen sets U containing x_{α} . Thus there exists a fuzzy singleton $x_{\alpha_{U}} \in U$ such that $f(x_{\alpha_{U}}) \notin {}_{s}Cl(V)$. Then the fuzzy net $(x_{\alpha_{U}}) S'N$ -converges to x_{α} but $(f(x_{\alpha_{U}}))$ does not RN-converges to $f(x_{\alpha})$.

By Lemma 3.1 and Theorem 3.6, we get the following results.

COROLLARY 3.2. If a function $f: X \to Y$ is fuzzy semi-irresolute, then for each fuzzy singleton x_{α} in X and each fuzzy net $(\phi(d))$ in X which SN-converges to x_{α} , the fuzzy net $(f(\phi(d)))$ θN -converges to $f(x_{\alpha})$.

PROPOSITION 3.7. A fuzzy net $(\phi(d))$ in a fuzzy space X RN-converges to x_{α} if and only if for each fuzzy regular semi-open set U containing x_{α} , there exists d_0 such that $\phi(d) \in U$ for all $d \geq d_0$.

PROOF. It follows from Lemma 2.5 and Definition.

By Theorem 3.6 and Proposition 3.7, we have the following Corollary.

COROLLARY 3.3. For a function $f: X \to Y$, the following statements are equivalent:

- (1) f is semi-irresolute;
- (2) If, for each fuzzy singleton x_{α} in X, a fuzzy net $(\phi(d))$ in X RN-converges to x_{α} , then for each fuzzy regular semi-open set V containing $f(x_{\alpha})$, there exists d_0 such that $f(\phi(d)) \in V$ for all $d \geq d_0$;
- (3) If, for each fuzzy singleton x_{α} in X, a fuzzy net $(\phi(d))$ in X S' N-converges to x_{α} , then for each fuzzy regular semi-open set V containing $f(x_{\alpha})$, there exists d_0 such that $f(\phi(d)) \in V$ for all $d \geq d_0$.

THEOREM 3.8. For a function $f: X \to Y$, the following statements are equivalent:

- (1) f is fuzzy strongly irresolute;
- (2) for each fuzzy singleton x_{α} in X and each fuzzy net $(\phi(d))$ in X which RN-converges to x_{α} , the fuzzy net $(f(\phi(d)))$ SN-converges to $f(x_{\alpha})$;
- (3) for each fuzzy singleton x_{α} in X and each fuzzy net $(\phi(d))$ in X which S'N-converges to x_{α} , the fuzzy net $(f(\phi(d)))$ SN-converges to $f(x_{\alpha})$.

PROOF	The pr	roof is	similar :	to that	of Theorem	3.6	Г

COROLLARY 3.4. If a function $f: X \to Y$ is fuzzy strongly irresolute, then for each fuzzy singleton x_{α} in X and each fuzzy net $(\phi(d))$ in X which SN-converges to x_{α} , the fuzzy net $(f(\phi(d)))$ RN-converges to $f(x_{\alpha})$.

Therefore, $(f(\phi(d))) \theta N$ -converges to $f(x_{\alpha})$.

4. Some properties

DEFINITION 4.1. A function $f: X \to Y$ is said to be fuzzy semi- θ -open if for each fuzzy semi- θ -open set U in X, f(U) is fuzzy semi- θ -open in Y.

DEFINITION 4.2. A fuzzy space X is said to be semi- θ - T_2 if for each fuzzy singleton x_{α} and y_{β} in X with different support, there exist two fuzzy semi-open semi-q-neighborhoods U and V of x_{α} and y_{β} , respectively such that ${}_sCl(U) \bigwedge {}_sCl(V) = 0_X$.

THEOREM 4.1. Let $f: X \to Y$ and $g: Y \to Z$ be two functions.

- (a) If f is fuzzy semi- θ -open surjection and $g \circ f$ is fuzzy semi-irresolute, then g is fuzzy semi-irresolute.
- (b) f is fuzzy strongly irresolute and g is fuzzy semi-irresolute, then $g \circ f$ is fuzzy semi-irresolute.
- PROOF. (a) Let V be a fuzzy semi- θ -open set in Z. Since $g \circ f$ is fuzzy semi-irresolute, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is fuzzy semi- θ -open in X by Theorem 3.4. Since f is semi- θ -open and surjection, $f(f^{-1}(g^{-1}(V))) = g^{-1}(V)$ is fuzzy semi- θ -open in Y. By Theorem 3.4, g is fuzzy semi-irresolute.
- (b) Let x_{α} be a fuzzy singleton in X and $y_{\alpha} = f(x_{\alpha})$. Let V be a fuzzy regular semi-open in Z containing $g(y_{\alpha}) = g(f(x_{\alpha}))$. Since g is fuzzy semi-irresolute, there exists a fuzzy regular semi-open set U containing y_{α} such that $g(U) \leq V$. Since f is fuzzy strongly irresolute, there exists a fuzzy semi-open set G containing x_{α} such that $f(sCl(G)) \leq U$. Hence $(g \circ f)(sCl(G)) = g(f(sCl(G))) \leq g(U) \leq V$. By Theorem 3.1, $g \circ f$ is fuzzy semi-irresolute.

THEOREM 4.2. If $f: X \to Y$ is fuzzy semi-irresolute injection and Y is fuzzy semi- θ - T_2 , then X is fuzzy semi- θ - T_2 .

PROOF. Let x_{α} and y_{β} be a pair of fuzzy singletons in X with different support. Since f is injection, $f(x_{\alpha}) \neq f(y_{\beta})$. Then there exist two fuzzy semi-open semi-q-nbds U and V of $f(x_{\alpha})$ and $f(y_{\beta})$ such that ${}_sCl(U) \bigwedge {}_sCl(V) = 0_Y$. Since ${}_sCl(U)$ and ${}_sCl(V)$ are fuzzy regular semi-open, $f^{-1}({}_sCl(U))$ and $f^{-1}({}_sCl(V))$ are fuzzy regular semi-open in X by Theorem 3.2. Moreover, $f^{-1}({}_sCl(U))$ and $f^{-1}({}_sCl(V))$ are semi-open semi-q-nbds of x_{α} and y_{β} , respectively and $f^{-1}({}_sCl(U)) \bigwedge f^{-1}({}_sCl(V)) = 0_X$. Therefore, X is fuzzy semi- θ - T_2 .

DEFINITION 4.3. A fuzzy space X is said to be semi- θ -disconnected if there exist two fuzzy semi-open sets V_1 and V_2 with $V_1 \neq 0_X$ and $V_2 \neq 0_X$ such that ${}_sCl(V_1) \bigwedge {}_sCl(V_2) = 0_X$ and $1_X = {}_sCl(V_1) \bigvee {}_sCl(V_2)$. A fuzzy space X is called semi- θ -connected if it is not semi- θ -disconnected.

THEOREM 4.3. If $f: X \to Y$ is fuzzy semi-irresolute surjection and X is fuzzy semi- θ -connected, then Y is fuzzy semi- θ -connected.

PROOF. Suppose that Y is not fuzzy semi- θ -connected. Then there exist two fuzzy semi-open sets V_1 and V_2 in Y with $V_1 \neq 0_Y$ and $V_2 \neq 0_Y$ such that

$$_sCl(V_1)\bigwedge{}_sCl(V_2)=0_Y$$
 and $1_Y={}_sCl(V_1)\bigvee{}_sCl(V_2).$

Since ${}_sCl(V_1) \neq 0_Y$ and ${}_sCl(V_2) \neq 0_Y$, $f^{-1}({}_sCl(V_1) \neq 0_X$ and $f^{-1}({}_sCl(V_2)) \neq 0_X$. Since ${}_sCl(V_1)$ and ${}_sCl(V_2)$ are fuzzy regular semi-open, $f^{-1}({}_sCl(V_1))$ and $f^{-1}({}_sCl(V_2))$ are fuzzy semi- θ -clopen. Moreover,

$$_{s}Cl(f^{-1}(_{s}Cl(V_{2}))) \bigwedge _{s}Cl(f^{-1}(_{s}Cl(V_{2}))) = 0_{X}$$

and

$$1_X = {}_sCl(f^{-1}({}_sCl(V_1))) \bigvee {}_sCl(f^{-1}({}_sCl(V_2))).$$

Therefore, X is not fuzzy semi- θ -connected.

DEFINITION 4.4. A fuzzy space X is said to be S^* -closed [14](resp. S-closed [11]) if for each fuzzy semi-open cover $\{V_{\alpha} \mid \alpha \in \Delta\}$ of X, there exists a finite subset Δ_0 of Δ such that $1_X = \bigvee_{\alpha \in \Delta_0} {}_sCl(V_{\alpha})(\text{resp.}1_X = \bigvee_{\alpha \in \Delta_0} {}_cCl(V_{\alpha}))$.

THEOREM 4.4. If $f: X \to Y$ is fuzzy semi-irresolute surjection and X is S^* -closed, then Y is S^* -closed.

PROOF. Let $\{V_{\alpha} \mid \alpha \in \Delta\}$ be a fuzzy semi-open cover of Y. Then $\{{}_sCl(V_{\alpha}) \mid \alpha \in \Delta\}$ is fuzzy regular semi-open cover of Y. By Theorem 3.2, $\{f^{-1}({}_sCl(V_{\alpha})) \mid \alpha \in \Delta\}$ is fuzzy regular semi-open cover of X, and hence semi-open cover of X. Since X is S^* -closed, there exists a finite subset Δ_0 of Δ such that $1_X = \bigvee_{\alpha \in \Delta_0} {}_sCl(f^{-1}({}_sCl(V_{\alpha})))$. Since each $f^{-1}({}_sCl(V_{\alpha}))$ is fuzzy semi- θ -clopen by Theorem 3.2 and Lemma 2.4, ${}_sCl(f^{-1}({}_sCl(V_{\alpha}))) = {}_sCl_{\theta}(f^{-1}({}_sCl(V_{\alpha}))) = {}_f^{-1}({}_sCl(V_{\alpha}))$. Thus $1_X = \bigvee_{\alpha \in \Delta_0} f^{-1}({}_sCl(V_{\alpha}))$. Since f is surjection, $1_Y = f(1_X) = \bigvee_{\alpha \in \Delta_0} SCl(V_{\alpha})$. Therefore, Y is S^* -closed.

COROLLARY 4.1. If $f: X \to Y$ is fuzzy semi-irresolute surjection and X is S^* -closed, then Y is S-closed.

DEFINITION 4.5. A fuzzy space X is s-regular if for each fuzzy singleton x_{α} in X and each fuzzy semi-open set V containing x_{α} , there exists a fuzzy open set U containing x_{α} such that ${}_{s}Cl(U) \leq V$.

THEOREM 4.5. If $f: X \to Y$ is fuzzy semi-irresolute and Y is fuzzy s-regular, then f is strongly irresolute.

PROOF. Let x_{α} be a fuzzy singleton in X and let V be a fuzzy semi-open set containing $f(x_{\alpha})$. Then there exists a fuzzy open set G containing $f(x_{\alpha})$ such that $f(x_{\alpha}) \in G \leq {}_{s}Cl(G) \leq V$. By Theorem 2.9 [10], there exists a fuzzy semi-open U containing x_{α} such that $f({}_{s}Cl(U)) \leq {}_{s}Cl(G)$. Thus $f({}_{s}Cl(U)) \leq V$ and f is fuzzy strongly irresolute. \square

DEFINITION 4.6. A function $f: X \to Y$ is said to be fuzzy semi-continuous [1](resp. fuzzy irresolute [12]) if $f^{-1}(V)$ is fuzzy semi-open in X for each fuzzy open(resp. fuzzy semi-open) set V in Y.

THEOREM 4.6. If $f: X \to Y$ is fuzzy semi-continuous and Y is fuzzy s-regular, then f is fuzzy irresolute.

PROOF. Let x_{α} be a fuzzy singleton in X and let V be a fuzzy semiopen set containing $f(x_{\alpha})$. Then there is a fuzzy open set G containing $f(x_{\alpha})$ such that ${}_sCl(G) \leq V$. Since f is semi-continuous, $U = f^{-1}(G)$ is fuzzy semi-open in X and $x_{\alpha} \in U$. Thus $f(U) \leq V$ and f is fuzzy irresolute. \square

By Remark 3.1 [10], Theorem 4.5 and Theorem 4.6, we get the following result.

COROLLARY 4.2. If $f: X \to Y$ is a function and Y is fuzzy s-regular, then the following statements are equivalent:

- (1) f is fuzzy strongly irresolute;
- (2) f is fuzzy irresolute;
- (3) f is fuzzy semi-irresolute;
- (4) f is fuzzy semi-continuous.

References

[1] K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), 14–32.

- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182–190.
- [3] S. H. Cho, A note on regular semiopen sets and S*-closed sets in L-fuzzy topological spaces(preprint).
- [4] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci. 22 (1971), 99-112.
- [5] _____, Semi-topological properties, Fund. Math. 74 (1972), 233–254.
- [6] G. L. Garg and D. Sivaraj, Presemi-open and irresolute functions, Soochow J. Math. 14 (1988), no. 1, 51-55.
- [7] B. Ghosh, Semi-continuous and semi-closed mappings and semi-connectedness in fuzzy setting, Fuzzy sets and Systems 35 (1990), 345-355.
- [8] F. H. Khedr and T. Noiri, On θ-irresolute functions, Indian J. Math. 28 (1986), no. 3, 211–217.
- [9] M. Macho Stadler and M. A. de Prada Vicente, On N-convergence of fuzzy nets, Fuzzy sets and Systems 51 (1992), 203-217.
- [10] S. Malakar, On fuzzy semi-irresolute and strongly irresolute functions, Fuzzy sets and Systems 45 (1992), 239-244.
- [11] M. N. Mukherjee and B. Ghosh, On fuzzy S-closed spaces and FSC sets, Bull. Malaysian Math. Sco. 12 (1989), 1–14.
- [12] M. N. Mukherjee and S. P. Sinha, Irresolute and almost open functions between fuzzy topological spases, Fuzzy sets and Systems 29 (1989), 381–388.
- [13] Pao-Ming Pu and Ying-Ming Liu, Fuzzy topology I. Neighborhood structure of a fuzzy point and Moore-Smith Convergence, J. Math. Anal. Appl. 76 (1980), 571-599.
- [14] S. P. Sinha, On S^* -closedness in fuzzy setting, preprint.
- [15] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353.

Department of Mathematics Hanseo University Chungnam 356-820, Korea E-mail: shcho@hanseo.ac.kr jkpark@hanseo.ac.kr