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FUZZY STRONGLY r-SEMICONTINUOUS MAPS

SEOK JONG LEE AND EUN Pyo LEE

ABSTRACT. As a generalizaton of the concepts of fuzzy strongly
semiopen sets and fuzzy strongly semicontinuous maps, we intro-
duce the concepts of fuzzy strong-ly r-semiopen sets and fuzzy
strongly r-semicontinuous maps in fuzzy topology. Also we intro-
duce fuzzy r-semiinterior and fuzzy r-semiclosure. By these con-
cept, we characterize fuzzy strongly r-semicontinuous, fuzzy strong-
ly r-semiopen and fuzzy strongly r-semiclosed maps.

1. Introduction and preliminaries

Chang [3] introduced fuzzy topological spaces and several other au-
thors continued the investigation of such spaces. Some authors [4], [5],
[7]-[10] introduced other definitions of fuzzy topology as a generalization
of Chang’s fuzzy topology. In this paper, as a generalizaton of the con-
cepts of fuzzy strongly semiopen sets and fuzzy strongly semicontinuous
maps of Shi-Zhong Bai [2], we introduce the concepts of fuzzy strongly r-
semiopen sets and fuzzy strongly r-semicontinuous maps in fuzzy topol-
ogy. Also we introduce fuzzy r-semiinterior and fuzzy r-semiclosure. By
these concept, we characterize fuzzy strongly r-semicontinuous, fuzzy
strongly r-semiopen and fuzzy strongly r-semiclosed maps.

We will denote the unit interval [0, 1] of the real line by I and [y =
(0,1]. A member p of I* is called a fuzzy set in X. For any p € IX, u¢
denotes the complement 1 — 4. By 0 and 1 we denote constant maps on
X with value 0 and 1, respectively.

A Chang’s fuzzy topology on X is a family T of fuzzy sets in X which
satisfies the following properties:
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(1) 0,1eT.
(2) If pr,up € T then py Aps € T.
(3) If p; € T for each i, then \/ p; € T
The pair (X, T) is called a Chang’s fuzzy topological space.
A fuzzy topology on X is a map 7 : IX — I which satisfies the
following properties:

(1) 7(0)=7(1) = 1.
(2) T (1 A po) > T (pa) AT (u2).
(3) TV ) = AT ().
The pair (X,7) is called a fuzzy topological space.

DEFINITION 1.1. Let p be a fuzzy set in a fuzzy topological space
(X,7T) and r € Iy. Then p is said to be

(1) fuzzy r-preopen if p < int(cl(y,r),r),

(2) fuzzy r-preclosed if cl(int(u,7),7) < p.

DEFINITION 1.2. Let f : (X,7T) — (Y,U) be a map from a fuzzy
topological space X to a fuzzy topological space Y and r € Iy. Then f
is called a fuzzy r-precontinuous map if f~!(u) is a fuzzy r-preopen set
in X for each fuzzy r-open set p in Y.

The notions of fuzzy semiopen, semiclosed sets and the weaker forms
of fuzzy continuity which are related to our discussion, can be found
in [1, 11]. All the other nonstandard definitions and notations can be
found in [6].

2. Fuzzy strongly r-semiopen sets

We are going to define fuzzy strongly r-semiopen sets and fuzzy
strongly r-semiclosed sets, and then investigate some of their proper-
ties.

DEFINITION 2.1. Let p be a fuzzy set in a fuzzy topological space
(X,T) and r € Iy. Then p is said to be
(1) fuzzy strongly r-semiopen if there is a fuzzy r-open set p in X
such that
p < p < int(cl(p,r),7),
(2) fuzzy strongly r-semiclosed if there is a fuzzy r-closed set p in X
such that
cl(int(p,r),r) < pu < p.
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THEOREM 2.2. Let u1 be a fuzzy set in a fuzzy topological space (X, T)
and r € Iy. Then the following statements are equivalent:

(1) w is fuzzy strongly r-semiopen.

(2) p¢ is fuzzy strongly r-semiclosed.

(3) p < int{cl(int(y,7),7),7).

(4) p€ > cl(int{cl(p®,r),7),7).

(5) w is fuzzy r-semiopen and fuzzy r-preopen.

(6) ue is fuzzy r-semiclosed and fuzzy r-preclosed.

ProOOF. (1) & (2), (3) & (4) and (5) < (6) are trivial.

(1) = (3). Let u be a fuzzy strongly r-semiopen set in X. Then there
is a fuzzy r-open set p in X such that p < u < int(cl{p,7),7). Since
T(p) >r and p > p, p=int(p,r) < int(p, 7). Thus we have

p < int(cl(p,7),r) < int(cl(int(w,r),r),7).

(3) = (1). Let int(cl(int(u,7),7),7) > u and take p = int(u,r). Since
7 (int(p,7)) > r, p is a fuzzy r-open set. Also,

=int{y,r) < wp <int(cl(int(p,r),r),r) = int(cl{p,r),7).
Hence p is a fuzzy strongly r-semiopen set.
(1) = (5). It is obvious.

(5) = (3). Let p be fuzzy r-semiopen and fuzzy r-preopen. Then
p < cl(int(p, r),7) and p < int(cl(p,r),7). Thus

g <int(cl(y,r),r) < int(cl(cl(int(y,r),7),7),7)
= int(cl(int(p,r),7), 7).
O

THEOREM 2.3. (1) Any union of fuzzy strongly r-semiopen sets is
fuzzy strongly r-semiopen.
(2) Any intersection of fuzzy strongly r-semiclosed sets is fuzzy strongly
r-semiclosed.

PROOF. (1) Let {u;} be a collection of fuzzy strongly r-semiopen
sets. Then for each i, there is a fuzzy r-open set p; such that p; < p; <
int(cl(p;,7),7). Since T(V ps) > AT (p:) >, \/ p; is a fuzzy r-open set.
Also

Vi <V i < Vint(cl(pi, 7), 7) < int(cl(V pi, 7), 7).

Hence V/ u; is a fuzzy strongly r-semiopen set.
(2) It follows from (1) by Theorem 2.2. O
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REMARK 2.4. It is obvious that every fuzzy r-open set is fuzzy strong-
ly r-semiopen and every fuzzy strongly r-semiopen set is not only a fuzzy
r-semiopen set but also a fuzzy r-preopen set. All of the converses need
not be true as shown in the following example.

ExaMPLE 2.5. Let X = I and p3,ue and pg be fuzzy sets in X

defined by
0 if 0<zx<i
= = =3
() {%—1 if l<z<i
1 if 0<z<i
pa(z) = ¢ —4x + 2 if%SxS%,
0 if $<z<l;
and
() 0 if 0<z<i,
) =
K lr—1) if L<w<l

Define T, : IX - I, T : IX - Tand T3: IX — I by

1 if p=0,1,
Ti(pw) =< % if p=pm,

0 otherwise;

1 if p=0,1,

To(p) =S 5 if p=p1,p2,mV s,
0 otherwise;
and _—

1 if 4=0,1,

Ta(p) =< 5 if p=us,
0 otherwise.
Then clearly 71,72 and 73 are fuzzy topologies on X. The fuzzy set
p3(u§) is fuzzy strongly %-semiopen (%-semiclosed) which is not fuzzy
3-open (3-closed) in (X, 77). Also ug(ug) is fuzzy 3-semiopen (3-semi-
closed) but not fuzzy strongly i-semiopen (}-semiclosed) in (X, 7). It
can be also seen that pq(p$) is fuzzy %-preopen (—%—-preclosed) which is
not fuzzy strongly %——semiopen (%-semiclosed) in (X,73). The example
further shows that 1 in (X,73) is a fuzzy 3-preopen set which is not
fuzzy %—semiopen and p3 in (X, 77) is a fuzzy %-semiopen set which is
not fuzzy %-preopen.
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DEFINITION 2.6. Let (X,7) be a fuzzy topological space. For each
r € Iy and for each u € IX, the fuzzy strong r-semiclosure is defined by

sscl(p,7) = N{p € I* : u < p, p is fuzzy strongly r-semiclosed}
and the fuzzy strong r-semiinterior is defined by
ssint(u,7) = \/{p € IX : u > p, p is fuzzy strongly r-semiopen}.

Obviously sscl(p,7) is the smallest fuzzy strongly r-semiclosed set
which contains p and ssint(u, r) is the greatest fuzzy strongly r-semiopen
set which is contained in u. Moreover, sscl(y,r) = p for any fuzzy
strongly r-semiclosed set p and ssint(u,r) = p for any fuzzy strongly
r-semiopen set y. Also we have

int(p, r) < ssint(p,r) < p < sscl(p,r) <cly,r).

Moreover, we have the following results.

(1) ssint(0,r) = 0, ssint(I,7) = 1.

(2) ssint(u,r) < p.
3) ssint(u A p,r) < ssint(p, r) A ssint(p, r).
4) ssint(ssint(u,r),r) = ssint(y, ).
5) sscl(0,7) = 0,sscl(1,r) = 1.
6) sscl(u,r) > p.
7) sscl(p V p,r) > sscl{u, r) V sscl(p, r).
(8) sscl(sscl(p,7),7) = sscl(u, 7).

(
(
(
(
(

THEOREM 2.7. For a fuzzy set u in a fuzzy topological space X and
r € Iy,

(1) ssint(u,r)¢ = sscl(uc,r).

(2) sscl(p, )¢ = ssint(u®, r).

PrOOF. (1) Since ssint(u,r) < p and ssint(u,r) is fuzzy strongly r-
semiopen, u¢ < ssint(u, r)¢ and ssint(p, )¢ is fuzzy strongly r-semiclosed
in X. Thus sscl(uf,r) < ssint(u,r)¢. Conversely, since u¢ < sscl(u®,r)
and sscl(p®,r) is fuzzy strongly r-semiclosed in X, sscl(u®,r)¢ < pu
and sscl(u®, )¢ is fuzzy strongly r-semiopen in X. Thus sscl(u,r)¢ <
ssint(u, r) and hence ssint(u, )¢ < sscl(u®, r).

(2) Similar to (1). O

Let (X, T) be a fuzzy topological space. For an r-cut 7, = {u € IX |
T (u) > r}, it is obvious that (X, 7,.) is a Chang’s fuzzy topological space
for all r € 1.
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Let (X,T) be a Chang’s fuzzy topological space and r € I;. Recall
[4] that a fuzzy topology T" : IX — I is defined by

1 if p=0,1,
T"(w)=qr if peT-{0,1},
0 otherwise.

THEOREM 2.8. Let 1 be a fuzzy set in a fuzzy topological space
(X,7T) and r € Iy. Then y is fuzzy strongly r-semiopen (r-semiclosed)
in (X,T) if and only if p is fuzzy strongly semiopen (semiclosed) in
(X, T,).

PROOF. Straightforward. O

THEOREM 2.9. Let u be a fuzzy set in a Chang’s fuzzy topological
space (X,T) and r € Iy. Then y is fuzzy strongly semiopen (semiclosed)
in (X,T) if and only if p is fuzzy strongly r-semiopen (semiclosed) in
(X, 7).

PRrOOF. Straightforward. O

REMARK 2.10. By the above two theorems, we know that the concept
of fuzzy strongly r-semiopen (r-semiclosed) is a generalization of the
concept of fuzzy strongly semiopen (semiclosed).

3. Fuzzy strongly r-semicontinuous maps

We introduce the notions of fuzzy strongly r-semicontinuous maps,
fuzzy strongly r-semiopen maps and fuzzy strongly r-semiclosed maps,
and then investigate some of their properties.

DEFINITION 3.1. Let f : (X,7) — (Y,U) be a map from a fuzzy
topological space X to a fuzzy topological space Y and r € Iy. Then f
is said to be

(1) fuzzy strongly r-semicontinuous if f~1(u) is a fuzzy strongly r-

semiopen set of X for each fuzzy r-open set u in Y, or equiva-
lently, f=1(u) is a fuzazy strongly r-semiclosed set in X for each
fuzzy r-closed set 4 inY,

(2) fuzzy strongly r-semiopen if f(p) is a fuzzy strongly r-semiopen

set in Y for each fuzzy r-open set p in X,
(3) fuzzy strongly r-semiclosed if f(p) is a fuzzy strongly r-semiclosed
set in Y for each fuzzy r-closed set p in X.
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REMARK 3.2. Clearly, every fuzzy r-continuous map is also a fuzzy
strongly r-semicontinuous map and every fuzzy strongly r-semicontin-
uous map is not only a fuzzy r-semicontinuous map but also a fuzzy
r-precontinuous map. All of the converses need not be true as shown in
the following example.

ExaMpPLE 3.3. Let X = {z} and u1, po and p3 be fuzzy sets in X
defined by

pi(e) =1, pa(z)=1% ps(z)=1

Define 71 : IX — I, T, : IX - Tand T3 : IX — I by
1 if u=0,1,

Ti(p) =<3 if p=p,ps,

0 otherwise;

1 if p=0,1,
T(p) =43 if p=pa,

0 otherwise;

and

1 if p= 0,1,
Ta(p) =143 if p=ps,

0 otherwise.

Then clearly 77, 73 and 73 are fuzzy topologies on X.

(1) Consider the map f : (X,71) — (X,73) defined by f(z) = .
Then f71(0) = 0, f~3(1) = 1 and f~(u2) = po are fuzzy strongly 3-
semiopen sets in (X, 77) and hence f is fuzzy strongly %—semicontinuous.
On the other hand, f~1(us) = pg is not fuzzy %-open in (X,71) and
hence f is not fuzzy %—continuous.

(2) Consider the map f : (X,75) — (X,73) defined by f(z) = z.
Then f~1(0) = 0, f~1(1) = I and f~!(us3) = ps are fuzay i-preopen
sets in (X, 72) and hence f is fuzzy %—precontinuous. On the other hand,
f~Y(u3) = pa is not fuzzy strongly %—semiopen in (X,73) and hence f
is not fuzzy strongly 1-semicontinuous.

(3) Consider the map f : (X,73) — (X, 73) defined by f(z) = z.
Then f~1(0) =0, f~1(1) = 1 and f~1(u3) = py are fuzzy %—semiopen
sets in (X,73) and hence f is fuzzy %-semicontinuous. On the other
hand, f~!(u2) = po is not fuzzy strongly —%-semiopen in (X,73) and
hence f is not fuzzy strongly %-Semicontinuous.
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The next theorem provides alternative characterizations of a fuzzy
strongly r-semicontinuous map by fuzzy r-closure and fuzzy r-interior.

THEOREM 3.4. Let f: (X,7) — (Y,U) be a map and r € Iy. Then
the following statements are equivalent:

(1) f is a fuzzy strongly r-semicontinuous map.
(2) cl(int(cl(f~*(p),7),7),7) < f~Ycl(u,r)) for each fuzzy set p in
Y

(3) f('cl(int(cl(p, r),7),7)) < cl(f(p),r) for each fuzzy set p in X.

PrOOF. (1) = (2). Let f be a fuzzy strongly r-semicontinuous map
and p a fuzzy set in Y. Then cl(p,r) is a fuzzy r-closed set in Y. Since
f is fuzzy strongly r-semicontinuous, f~!(cl(u,r)) is a fuzzy strongly
r-semiclosed set in X. By Theorem 2.2,

FHel(p, ) = elint(cl(f~Hel(u, 7)), 1), 1), 7)
> cl(int(cl(f~Y(u),7),7), 7).
(2) = (3). Let p be a fuzzy set in X. Then f(p) is a fuzzy set in Y.
By (2),
FHE(F(p) 7)) = elint(cl(F71 f(p),r),7),7) 2 elint(cl(p,7),7), 7).
Hence we have
cl(f(p),r) = fFH(el(f(p),)) 2 f(cl(int(cl(p, 7),7),7))-

(3) = (1). Let u be a fuzzy r-closed set in Y. Then f~1(u) is a fuzzy
set in X. By (3),

Fel(mt(cl(f (), ), m), 7)) S A(fFH (), ) S clp,r) = p.
Hence we have

cl(int(cl(f(u),r),r),r) < fHf(elint(el(f (1), 7),7), 7))

< fHw).
Thus f~(u) is a fuzzy strongly r-semiclosed set in X and hence f is a
fuzzy strongly r-semicontinuous map. O

A fuzzy strongly r-semicontinuous map can be characterized as fol-
lows.

THEOREM 3.5. Let f: (X,7T) — (Y,U) be a map and r € Iy. Then
the following statements are equivalent:

(1) f is a fuzzy strongly r-semicontinuous map.

(2) f(sscl(p,r)) < cl(f(p),r) for each fuzzy set p in X.

(3) sscl(f~(w),r) < f~Y(cl(u,7)) for each fuzzy set y in Y.
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(4) f(int(u,r)) < ssint(f~1(u),r) for each fuzzy set ppin'Y.

PROOF. (1) = (2). Let p be a fuzzy set in X. Since cl(f(p),r) is a
fuzzy r-closed set in Y, f=1(cl(f(p),r)) is a fuzzy strongly r-semiclosed
set in X. Thus

sscl(p, ) < sscl(f1f(p), 7) < ssel(f7H(cl(f(p), 7)), )
= fHcl(f(p),7))-

Hence

f(sscl(p,r)) < £F7Hel(F(p), 7)) < cl(f(p),7)-
(2) = (3). Let u be a fuzzy set in Y. By (2),
Flsscl(f (), m)) < el(FF~Hw),7) < cllp, 7).
Thus
sscl(f 1 (), r) < f7Hf(ssel(f7H(w),m)) < f ek, 7).

(3) = (4). Let u be a fuzzy set in Y. Then p€ is a fuzzy set in Y.

By (3),
sscl(f7H ()%, m) = sscl(f 1 (), r) < fHcl(we, 7))
By Theorem 2.7,
FH(int(p, 7)) = F7H(el(uC, )¢ < ssel(F7H(u)%,r)¢ = ssint(f7H(u), 7).

(4) = (1). Let u be a fuzzy r-open set in Y. Then int(u,r) = u. By

(4),
FHR) = F7 (it (u, r)) < ssint(f7H ), ) < F7HR)-

So f~(u) = ssint(f~!(u),r) and hence f~!(u) is a fuzzy strongly r-

semiopen set in X. Thus f is fuzzy strongly r-semicontinuous. O

THEOREM 3.6. Let f : (X,T) — (Y,U) be a bijection and r €
Iy. Then f is a fuzzy strongly r-semicontinuous map if and only if
int(f(p),r) < f(ssint(p,r)) for each fuzzy set p in X.

ProoOF. Let f be a fuzzy strongly r-semicontinuous map and p a
fuzzy set in X. Since int(f(p),r) is fuzzy r-open in Y, f~1(int(f(p),r))
is fuzzy strongly r-semiopen in X. Since f is one-to-one, we have

F7H(int(£(p),r)) < ssint(f 7" f(p), ) = ssint(p, 7).

Since f is onto, we have

int(f(p),r) = ffH(int(f(p),)) < f(ssint(p, 7).
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Conversely, let 1 be a fuzzy r-open set in Y. Then int(u,r) = u. Since
f is onto,

Fssint(f (), 7)) 2 int(ff 71 (), r) = int(n,7) = 4.
Since f is one-to-one, we have

F7H ) < £ f(ssint (71 (), 7)) = ssint (£~ (1), 7) < £ ().
So f~Y(u) = ssint(f~1(u),r) and hence f~1(u) is a fuzzy strongly r-
semiopen set in X. Thus f is fuzzy strongly r-semicontinuous. |

The next theorem provides alternative characterizations of a fuzzy
strongly r-semiopen map.

THEOREM 3.7. Let f : (X,T) — (Y,U) be a map and r € Iy. Then
the following statements are equivalent:

(1) f is a fuzzy strongly r-semiopen map-.

(2) f(int{p,r)) < ssint(f(p),r) for each fuzzy set p in X.

(3) int(f~Y(u),r) < f~Y(ssint(p,r)) for each fuzzy set p in Y.

Proor. (1) = (2). Let p be a fuzzy set in X. Clearly int(p,r) is
a fuzzy r-open set in X. Since f is a fuzzy strongly r-semiopen map,
f(int(p, 7)) is a fuzzy strongly r-semiopen set in Y. Thus

f(@int(p, 7)) = ssint(f(int(p, 7)), r) < ssint(f(p), 7).
(2) = (3). Let u be a fuzzy set in Y. Then f~1(u) is a fuzzy set in
X. By (2),

FGnt(f = (), 7)) < ssint(f£7(w),r) < ssint(p, 7).
Thus we have
int(f 7 (w),r) < FHf(int(f7(w), ) < F (ssint(u, 7).

(3) = (1). Let p be a fuzzy r-open set in X. Then int(p,7) = p and
f(p) is a fuzzy set in Y. By (3),

p = int(p,r) <int(ff(p),r) < F(ssint(f(p),1)).
Hence we have

F(p) < fF7 (ssint(f(p),m)) < ssint(f(p),m) < f(p)-

Thus f(p) = ssint(f(p), ) and hence f(p) is a fuzzy strongly r-semiopen
set in Y. Therefore f is fuzzy strongly r-semiopen. |

A fuzzy strongly r-semiclosed map can be characterized as follows.

THEOREM 3.8. Let f : (X,7T) — (Y,U) be a map and r € Iy. Then
the following statements are equivalent:
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(1) f is a fuzzy strongly r-semiclosed map.
(2) sscl(f(p),r) < f(cl(p,r)) for each fuzzy set p in X.

PROOF. (1) = (2). Let p be a fuzzy set in X. Clearly cl(p,r) is a
fuzzy r-closed set in X. Since f is a fuzzy strongly r-semiclosed map,
f(cl(p, 7)) is a fuzzy strongly r-semiclosed set of Y. Thus

sscl(f(p),r) < sscl(f(cl(p,7)),m) = f(cl(p,7))-
(2) = (1). Let p be a fuzzy r-closed set in X. Then cl(p,7) = p. By
(2),
sscl(f(p),r) < f(cl(p,)) = f(p) < sscl(f(p), 7).
Thus f(p) = sscl(f(p),r) and hence f(p) is a fuzzy strongly r-semiclosed
set in Y. Therefore f is fuzzy strongly r-semiclosed. O

THEOREM 3.9. Let f : (X,7) — (Y,U) be a bijection and r € Iy.
Then f is a fuzzy strongly r-semiclosed map if and only if f ~L(sscl(p, 7))
< cl(f~Y(w),r) for each fuzzy set p inY.

PROOF. Let f be a fuzzy strongly r-semiclosed map and p a fuzzy
set in Y. Then f~%(p) is a fuzzy set in X. Since f is onto,

sscl(, r) = sscl(f 1 (p),7) < HC T MEE

Since f is one-to-one, we have

£ (ssel(p, 1)) < FTHAA(S () 7)) = el(F 7 (), m).
Conversely, let p be a fuzzy r-closed set in X. Then cl(p,r) = p. Since
f is one-to-one,

F (sscl(£(p), ) < (ST f(p),) = clp,7) = p.

Since f is onto, we have

Fp) = [ (sscl(f(p), ) = sscl(f(p),) = f(p)-

Thus f(p) = sscl(f(p),) and hence f(p) is a fuzzy strongly r-semiclosed
set in Y. Therefore f is fuzzy strongly 7-semiclosed. O

THEOREM 3.10. Let f : (X,7T) — (Y,U) be a map from a fuzzy
topological space X to a fuzzy topological space Y and r € Io. Then
f is fuzzy strongly r-semicontinuous (r-semiopen, r-semiclosed) if and
only if f : (X, T;) — (Y,U) is fuzzy strongly semicontinuous (semiopen,
semiclosed).

PRrOOF. Straightforward. O
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THEOREM 3.11. Let f : (X,T) — (Y,U) be a map from a Chang’s
fuzzy topological space X to a Chang’s fuzzy topological space Y and
r € Iy. Then f is fuzzy strongly semicontinuous (semiopen, semiclosed)
if and only if f : (X,T") — (Y,U") is fuzzy strongly r-semicontinuous
(r-semiopen, r-semiclosed).

PROOF. Straightforward. O

REMARK 3.12. By the above two theorems, we know that the con-
cept of a fuzzy strongly r-semicontinuous(r-semiopen, r-semiclosed, re-
spectively) map is a generalization of the concept of a fuzzy strongly
semicontinuous(semiopen, semiclosed, respectively) map.
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