FUZZY STRONGLY r-SEMICONTINUOUS MAPS

SEOK JONG LEE AND EUN PYO LEE

ABSTRACT. As a generalizaton of the concepts of fuzzy strongly semiopen sets and fuzzy strongly semicontinuous maps, we introduce the concepts of fuzzy strong-ly r-semiopen sets and fuzzy strongly r-semicontinuous maps in fuzzy topology. Also we introduce fuzzy r-semiinterior and fuzzy r-semiclosure. By these concept, we characterize fuzzy strongly r-semicontinuous, fuzzy strongly r-semiopen and fuzzy strongly r-semiclosed maps.

1. Introduction and preliminaries

Chang [3] introduced fuzzy topological spaces and several other authors continued the investigation of such spaces. Some authors [4], [5], [7]-[10] introduced other definitions of fuzzy topology as a generalization of Chang's fuzzy topology. In this paper, as a generalization of the concepts of fuzzy strongly semiopen sets and fuzzy strongly semicontinuous maps of Shi-Zhong Bai [2], we introduce the concepts of fuzzy strongly r-semiopen sets and fuzzy strongly r-semicontinuous maps in fuzzy topology. Also we introduce fuzzy r-semicontinuous maps in fuzzy topology. Also we characterize fuzzy strongly r-semicontinuous, fuzzy strongly r-semiopen and fuzzy strongly r-semicontinuous, fuzzy strongly r-semiopen and fuzzy strongly r-semiclosed maps.

We will denote the unit interval [0,1] of the real line by I and $I_0 = (0,1]$. A member μ of I^X is called a fuzzy set in X. For any $\mu \in I^X$, μ^c denotes the complement $1 - \mu$. By $\tilde{0}$ and $\tilde{1}$ we denote constant maps on X with value 0 and 1, respectively.

A Chang's fuzzy topology on X is a family T of fuzzy sets in X which satisfies the following properties:

Received April 11, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 54A40, 54C08.

Key words and phrases: fuzzy strongly r-semiopen, fuzzy strongly r-semicontinuous.

This work was supported by grant No. R01-2002-000-00315-0 from the Basic Research Program of the Korea Science & Engineering Foundation.

- (1) $\tilde{0}, \tilde{1} \in T$.
- (2) If $\mu_1, \mu_2 \in T$ then $\mu_1 \wedge \mu_2 \in T$.
- (3) If $\mu_i \in T$ for each i, then $\bigvee \mu_i \in T$.

The pair (X,T) is called a *Chang's fuzzy topological space*.

A fuzzy topology on X is a map $\mathcal{T}:I^X\to I$ which satisfies the following properties:

- (1) $T(\tilde{0}) = T(\tilde{1}) = 1$.
- (2) $\mathcal{T}(\mu_1 \wedge \mu_2) \geq \mathcal{T}(\mu_1) \wedge \mathcal{T}(\mu_2)$.
- (3) $\mathcal{T}(\bigvee \mu_i) \geq \bigwedge \mathcal{T}(\mu_i)$.

The pair (X, \mathcal{T}) is called a fuzzy topological space.

DEFINITION 1.1. Let μ be a fuzzy set in a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then μ is said to be

- (1) fuzzy r-preopen if $\mu \leq \operatorname{int}(\operatorname{cl}(\mu, r), r)$,
- (2) fuzzy r-preclosed if $cl(int(\mu, r), r) \leq \mu$.

DEFINITION 1.2. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a map from a fuzzy topological space X to a fuzzy topological space Y and $r\in I_0$. Then f is called a fuzzy r-precontinuous map if $f^{-1}(\mu)$ is a fuzzy r-preopen set in X for each fuzzy r-open set μ in Y.

The notions of fuzzy semiopen, semiclosed sets and the weaker forms of fuzzy continuity which are related to our discussion, can be found in [1, 11]. All the other nonstandard definitions and notations can be found in [6].

2. Fuzzy strongly r-semiopen sets

We are going to define fuzzy strongly r-semiopen sets and fuzzy strongly r-semiclosed sets, and then investigate some of their properties.

DEFINITION 2.1. Let μ be a fuzzy set in a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then μ is said to be

(1) fuzzy strongly r-semiopen if there is a fuzzy r-open set ρ in X such that

$$\rho \le \mu \le \operatorname{int}(\operatorname{cl}(\rho, r), r),$$

(2) fuzzy strongly r-semiclosed if there is a fuzzy r-closed set ρ in X such that

$$\operatorname{cl}(\operatorname{int}(\rho, r), r) \leq \mu \leq \rho.$$

THEOREM 2.2. Let μ be a fuzzy set in a fuzzy topological space (X, T) and $r \in I_0$. Then the following statements are equivalent:

- (1) μ is fuzzy strongly r-semiopen.
- (2) μ^c is fuzzy strongly r-semiclosed.
- (3) $\mu \leq \operatorname{int}(\operatorname{cl}(\operatorname{int}(\mu, r), r), r)$.
- (4) $\mu^c \ge \operatorname{cl}(\operatorname{int}(\operatorname{cl}(\mu^c, r), r), r).$
- (5) μ is fuzzy r-semiopen and fuzzy r-preopen.
- (6) μ^c is fuzzy r-semiclosed and fuzzy r-preclosed.

PROOF. (1) \Leftrightarrow (2), (3) \Leftrightarrow (4) and (5) \Leftrightarrow (6) are trivial.

 $(1) \Rightarrow (3)$. Let μ be a fuzzy strongly r-semiopen set in X. Then there is a fuzzy r-open set ρ in X such that $\rho \leq \mu \leq \operatorname{int}(\operatorname{cl}(\rho, r), r)$. Since $\mathcal{T}(\rho) \geq r$ and $\mu \geq \rho$, $\rho = \operatorname{int}(\rho, r) \leq \operatorname{int}(\mu, r)$. Thus we have

$$\mu \le \operatorname{int}(\operatorname{cl}(\rho, r), r) \le \operatorname{int}(\operatorname{cl}(\operatorname{int}(\mu, r), r), r).$$

 $(3) \Rightarrow (1)$. Let $\operatorname{int}(\operatorname{cl}(\operatorname{int}(\mu, r), r), r) \geq \mu$ and take $\rho = \operatorname{int}(\mu, r)$. Since $\mathcal{T}(\operatorname{int}(\mu, r)) \geq r$, ρ is a fuzzy r-open set. Also,

$$\rho = \operatorname{int}(\mu, r) \leq \mu \leq \operatorname{int}(\operatorname{cl}(\operatorname{int}(\mu, r), r), r) = \operatorname{int}(\operatorname{cl}(\rho, r), r).$$

Hence μ is a fuzzy strongly r-semiopen set.

- $(1) \Rightarrow (5)$. It is obvious.
- $(5) \Rightarrow (3)$. Let μ be fuzzy r-semiopen and fuzzy r-preopen. Then $\mu \leq \operatorname{cl}(\operatorname{int}(\mu,r),r)$ and $\mu \leq \operatorname{int}(\operatorname{cl}(\mu,r),r)$. Thus

$$\begin{split} \mu & \leq \mathrm{int}(\mathrm{cl}(\mu,r),r) \leq \mathrm{int}(\mathrm{cl}(\mathrm{cl}(\mathrm{int}(\mu,r),r),r), r) \\ & = \mathrm{int}(\mathrm{cl}(\mathrm{int}(\mu,r),r),r). \end{split}$$

Theorem 2.3. (1) Any union of fuzzy strongly r-semiopen sets is fuzzy strongly r-semiopen.

(2) Any intersection of fuzzy strongly r-semiclosed sets is fuzzy strongly r-semiclosed.

PROOF. (1) Let $\{\mu_i\}$ be a collection of fuzzy strongly r-semiopen sets. Then for each i, there is a fuzzy r-open set ρ_i such that $\rho_i \leq \mu_i \leq \inf(\operatorname{cl}(\rho_i, r), r)$. Since $\mathcal{T}(\bigvee \rho_i) \geq \bigwedge \mathcal{T}(\rho_i) \geq r$, $\bigvee \rho_i$ is a fuzzy r-open set. Also

$$\bigvee \rho_i \leq \bigvee \mu_i \leq \bigvee \operatorname{int}(\operatorname{cl}(\rho_i, r), r) \leq \operatorname{int}(\operatorname{cl}(\bigvee \rho_i, r), r).$$

Hence $\bigvee \mu_i$ is a fuzzy strongly r-semiopen set.

(2) It follows from (1) by Theorem 2.2.

Remark 2.4. It is obvious that every fuzzy r-open set is fuzzy strongly r-semiopen and every fuzzy strongly r-semiopen set is not only a fuzzy r-semiopen set but also a fuzzy r-preopen set. All of the converses need not be true as shown in the following example.

EXAMPLE 2.5. Let X = I and μ_1, μ_2 and μ_3 be fuzzy sets in X defined by

$$\mu_1(x) = \begin{cases} 0 & \text{if } 0 \le x \le \frac{1}{2}, \\ 2x - 1 & \text{if } \frac{1}{2} \le x \le 1; \end{cases}$$

$$\mu_2(x) = \begin{cases} 1 & \text{if } 0 \le x \le \frac{1}{4}, \\ -4x + 2 & \text{if } \frac{1}{4} \le x \le \frac{1}{2}, \\ 0 & \text{if } \frac{1}{2} \le x \le 1; \end{cases}$$

and

$$\mu_3(x) = \begin{cases} 0 & \text{if } 0 \le x \le \frac{1}{4}, \\ \frac{1}{3}(4x - 1) & \text{if } \frac{1}{4} \le x \le 1. \end{cases}$$

Define $\mathcal{T}_1: I^X \to I$, $\mathcal{T}_2: I^X \to I$ and $\mathcal{T}_3: I^X \to I$ by

$$\mathcal{T}_1(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_1, \\ 0 & \text{otherwise;} \end{cases}$$

$$\mathcal{T}_{2}(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_{1}, \mu_{2}, \mu_{1} \vee \mu_{2}, \\ 0 & \text{otherwise;} \end{cases}$$

and

$$\mathcal{T}_3(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_3, \\ 0 & \text{otherwise.} \end{cases}$$

Then clearly $\mathcal{T}_1, \mathcal{T}_2$ and \mathcal{T}_3 are fuzzy topologies on X. The fuzzy set $\mu_3(\mu_3^c)$ is fuzzy strongly $\frac{1}{2}$ -semiopen $(\frac{1}{2}\text{-semiclosed})$ which is not fuzzy $\frac{1}{2}\text{-open}$ $(\frac{1}{2}\text{-closed})$ in (X, \mathcal{T}_1) . Also $\mu_3(\mu_3^c)$ is fuzzy $\frac{1}{2}\text{-semiopen}$ $(\frac{1}{2}\text{-semiclosed})$ but not fuzzy strongly $\frac{1}{2}\text{-semiopen}$ $(\frac{1}{2}\text{-semiclosed})$ in (X, \mathcal{T}_2) . It can be also seen that $\mu_1(\mu_1^c)$ is fuzzy $\frac{1}{2}\text{-preopen}$ $(\frac{1}{2}\text{-preclosed})$ which is not fuzzy strongly $\frac{1}{2}\text{-semiopen}$ $(\frac{1}{2}\text{-semiclosed})$ in (X, \mathcal{T}_3) . The example further shows that μ_1 in (X, \mathcal{T}_3) is a fuzzy $\frac{1}{2}\text{-preopen}$ set which is not fuzzy $\frac{1}{2}\text{-semiopen}$ and μ_3 in (X, \mathcal{T}_2) is a fuzzy $\frac{1}{2}\text{-semiopen}$ set which is not fuzzy $\frac{1}{2}\text{-preopen}$.

DEFINITION 2.6. Let (X, \mathcal{T}) be a fuzzy topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the fuzzy strong r-semiclosure is defined by

$$\operatorname{sscl}(\mu, r) = \bigwedge \{ \rho \in I^X : \mu \leq \rho, \ \rho \text{ is fuzzy strongly } r\text{-semiclosed} \}$$

and the fuzzy strong r-semiinterior is defined by

$$\operatorname{ssint}(\mu, r) = \bigvee \{ \rho \in I^X : \mu \geq \rho, \ \rho \text{ is fuzzy strongly } r\text{-semiopen} \}.$$

Obviously $\operatorname{sscl}(\mu,r)$ is the smallest fuzzy strongly r-semiclosed set which contains μ and $\operatorname{ssint}(\mu,r)$ is the greatest fuzzy strongly r-semiopen set which is contained in μ . Moreover, $\operatorname{sscl}(\mu,r) = \mu$ for any fuzzy strongly r-semiclosed set μ and $\operatorname{ssint}(\mu,r) = \mu$ for any fuzzy strongly r-semiopen set μ . Also we have

$$\operatorname{int}(\mu, r) \leq \operatorname{ssint}(\mu, r) \leq \mu \leq \operatorname{sscl}(\mu, r) \leq \operatorname{cl}(\mu, r).$$

Moreover, we have the following results.

- (1) $\operatorname{ssint}(\tilde{0}, r) = \tilde{0}, \operatorname{ssint}(\tilde{1}, r) = \tilde{1}.$
- (2) $\operatorname{ssint}(\mu, r) \leq \mu$.
- (3) $\operatorname{ssint}(\mu \wedge \rho, r) \leq \operatorname{ssint}(\mu, r) \wedge \operatorname{ssint}(\rho, r)$.
- (4) $\operatorname{ssint}(\operatorname{ssint}(\mu, r), r) = \operatorname{ssint}(\mu, r)$.
- (5) $\operatorname{sscl}(\tilde{0}, r) = \tilde{0}, \operatorname{sscl}(\tilde{1}, r) = \tilde{1}.$
- (6) $\operatorname{sscl}(\mu, r) \geq \mu$.
- (7) $\operatorname{sscl}(\mu \vee \rho, r) \geq \operatorname{sscl}(\mu, r) \vee \operatorname{sscl}(\rho, r)$.
- (8) $\operatorname{sscl}(\operatorname{sscl}(\mu, r), r) = \operatorname{sscl}(\mu, r)$.

THEOREM 2.7. For a fuzzy set μ in a fuzzy topological space X and $r \in I_0$,

- (1) $\operatorname{ssint}(\mu, r)^c = \operatorname{sscl}(\mu^c, r)$.
- (2) $\operatorname{sscl}(\mu, r)^c = \operatorname{ssint}(\mu^c, r)$.

PROOF. (1) Since $\operatorname{ssint}(\mu, r) \leq \mu$ and $\operatorname{ssint}(\mu, r)$ is fuzzy strongly r-semiopen, $\mu^c \leq \operatorname{ssint}(\mu, r)^c$ and $\operatorname{ssint}(\mu, r)^c$ is fuzzy strongly r-semiclosed in X. Thus $\operatorname{sscl}(\mu^c, r) \leq \operatorname{ssint}(\mu, r)^c$. Conversely, since $\mu^c \leq \operatorname{sscl}(\mu^c, r)$ and $\operatorname{sscl}(\mu^c, r)$ is fuzzy strongly r-semiclosed in X, $\operatorname{sscl}(\mu^c, r)^c \leq \mu$ and $\operatorname{sscl}(\mu^c, r)^c$ is fuzzy strongly r-semiopen in X. Thus $\operatorname{sscl}(\mu^c, r)^c \leq \operatorname{ssint}(\mu, r)$ and hence $\operatorname{ssint}(\mu, r)^c \leq \operatorname{sscl}(\mu^c, r)$.

(2) Similar to (1).
$$\Box$$

Let (X, \mathcal{T}) be a fuzzy topological space. For an r-cut $\mathcal{T}_r = \{ \mu \in I^X \mid \mathcal{T}(\mu) \geq r \}$, it is obvious that (X, \mathcal{T}_r) is a Chang's fuzzy topological space for all $r \in I_0$.

Let (X,T) be a Chang's fuzzy topological space and $r \in I_0$. Recall [4] that a fuzzy topology $T^r: I^X \to I$ is defined by

$$T^r(\mu) = egin{cases} 1 & ext{if} & \mu = \tilde{0}, \tilde{1}, \\ r & ext{if} & \mu \in T - \{\tilde{0}, \tilde{1}\}, \\ 0 & ext{otherwise.} \end{cases}$$

THEOREM 2.8. Let μ be a fuzzy set in a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then μ is fuzzy strongly r-semiopen (r-semiclosed) in (X, \mathcal{T}) if and only if μ is fuzzy strongly semiopen (semiclosed) in (X, \mathcal{T}_r) .

PROOF. Straightforward.

THEOREM 2.9. Let μ be a fuzzy set in a Chang's fuzzy topological space (X,T) and $r \in I_0$. Then μ is fuzzy strongly semiopen (semiclosed) in (X,T) if and only if μ is fuzzy strongly r-semiopen (semiclosed) in (X,T^r) .

PROOF. Straightforward.

REMARK 2.10. By the above two theorems, we know that the concept of fuzzy strongly r-semiopen (r-semiclosed) is a generalization of the concept of fuzzy strongly semiopen (semiclosed).

3. Fuzzy strongly r-semicontinuous maps

We introduce the notions of fuzzy strongly r-semicontinuous maps, fuzzy strongly r-semiopen maps and fuzzy strongly r-semiclosed maps, and then investigate some of their properties.

DEFINITION 3.1. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a map from a fuzzy topological space X to a fuzzy topological space Y and $r\in I_0$. Then f is said to be

- (1) fuzzy strongly r-semicontinuous if $f^{-1}(\mu)$ is a fuzzy strongly r-semiopen set of X for each fuzzy r-open set μ in Y, or equivalently, $f^{-1}(\mu)$ is a fuzzy strongly r-semiclosed set in X for each fuzzy r-closed set μ in Y,
- (2) fuzzy strongly r-semiopen if $f(\rho)$ is a fuzzy strongly r-semiopen set in Y for each fuzzy r-open set ρ in X,
- (3) fuzzy strongly r-semiclosed if $f(\rho)$ is a fuzzy strongly r-semiclosed set in Y for each fuzzy r-closed set ρ in X.

Remark 3.2. Clearly, every fuzzy r-continuous map is also a fuzzy strongly r-semicontinuous map and every fuzzy strongly r-semicontinuous map is not only a fuzzy r-semicontinuous map but also a fuzzy r-precontinuous map. All of the converses need not be true as shown in the following example.

EXAMPLE 3.3. Let $X = \{x\}$ and μ_1 , μ_2 and μ_3 be fuzzy sets in X defined by

$$\mu_1(x) = \frac{1}{2}, \quad \mu_2(x) = \frac{1}{3}, \quad \mu_3(x) = \frac{1}{4}.$$

Define $\mathcal{T}_1: I^X \to I$, $\mathcal{T}_2: I^X \to I$ and $\mathcal{T}_3: I^X \to I$ by

$$\mathcal{T}_{1}(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_{1}, \mu_{3}, \\ 0 & \text{otherwise;} \end{cases}$$

$$\mathcal{T}_2(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_2, \\ 0 & \text{otherwise;} \end{cases}$$

and

$$\mathcal{T}_3(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_3, \\ 0 & \text{otherwise.} \end{cases}$$

Then clearly \mathcal{T}_1 , \mathcal{T}_2 and \mathcal{T}_3 are fuzzy topologies on X.

- (1) Consider the map $f:(X,\mathcal{T}_1)\to (X,\mathcal{T}_2)$ defined by f(x)=x. Then $f^{-1}(\tilde{0})=\tilde{0},\ f^{-1}(\tilde{1})=\tilde{1}$ and $f^{-1}(\mu_2)=\mu_2$ are fuzzy strongly $\frac{1}{2}$ -semiopen sets in (X,\mathcal{T}_1) and hence f is fuzzy strongly $\frac{1}{2}$ -semicontinuous. On the other hand, $f^{-1}(\mu_2)=\mu_2$ is not fuzzy $\frac{1}{2}$ -open in (X,\mathcal{T}_1) and hence f is not fuzzy $\frac{1}{2}$ -continuous.
- (2) Consider the map $f:(X,\mathcal{T}_2)\to (X,\mathcal{T}_3)$ defined by f(x)=x. Then $f^{-1}(\tilde{0})=\tilde{0},\ f^{-1}(\tilde{1})=\tilde{1}$ and $f^{-1}(\mu_3)=\mu_3$ are fuzzy $\frac{1}{2}$ -preopen sets in (X,\mathcal{T}_2) and hence f is fuzzy $\frac{1}{2}$ -precontinuous. On the other hand, $f^{-1}(\mu_3)=\mu_3$ is not fuzzy strongly $\frac{1}{2}$ -semiopen in (X,\mathcal{T}_2) and hence f is not fuzzy strongly $\frac{1}{2}$ -semicontinuous.
- (3) Consider the map $f:(X,\mathcal{T}_3)\to (X,\mathcal{T}_2)$ defined by f(x)=x. Then $f^{-1}(\tilde{0})=\tilde{0},\ f^{-1}(\tilde{1})=\tilde{1}$ and $f^{-1}(\mu_2)=\mu_2$ are fuzzy $\frac{1}{2}$ -semiopen sets in (X,\mathcal{T}_3) and hence f is fuzzy $\frac{1}{2}$ -semicontinuous. On the other hand, $f^{-1}(\mu_2)=\mu_2$ is not fuzzy strongly $\frac{1}{2}$ -semiopen in (X,\mathcal{T}_3) and hence f is not fuzzy strongly $\frac{1}{2}$ -semicontinuous.

The next theorem provides alternative characterizations of a fuzzy strongly r-semicontinuous map by fuzzy r-closure and fuzzy r-interior.

THEOREM 3.4. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a map and $r\in I_0$. Then the following statements are equivalent:

- (1) f is a fuzzy strongly r-semicontinuous map.
- (2) $\operatorname{cl}(\operatorname{int}(\operatorname{cl}(f^{-1}(\mu),r),r),r) \leq f^{-1}(\operatorname{cl}(\mu,r))$ for each fuzzy set μ in Y.
- (3) $f(\operatorname{cl}(\operatorname{int}(\operatorname{cl}(\rho,r),r),r)) \leq \operatorname{cl}(f(\rho),r)$ for each fuzzy set ρ in X.

PROOF. (1) \Rightarrow (2). Let f be a fuzzy strongly r-semicontinuous map and μ a fuzzy set in Y. Then $\operatorname{cl}(\mu, r)$ is a fuzzy r-closed set in Y. Since f is fuzzy strongly r-semicontinuous, $f^{-1}(\operatorname{cl}(\mu, r))$ is a fuzzy strongly r-semiclosed set in X. By Theorem 2.2,

$$f^{-1}(\operatorname{cl}(\mu, r)) \ge \operatorname{cl}(\operatorname{int}(\operatorname{cl}(f^{-1}(\operatorname{cl}(\mu, r)), r), r), r)$$

$$\ge \operatorname{cl}(\operatorname{int}(\operatorname{cl}(f^{-1}(\mu), r), r), r).$$

(2) \Rightarrow (3). Let ρ be a fuzzy set in X. Then $f(\rho)$ is a fuzzy set in Y. By (2),

$$f^{-1}(\operatorname{cl}(f(\rho),r)) \geq \operatorname{cl}(\operatorname{int}(\operatorname{cl}(f^{-1}f(\rho),r),r),r) \geq \operatorname{cl}(\operatorname{int}(\operatorname{cl}(\rho,r),r),r).$$

Hence we have

$$\operatorname{cl}(f(\rho), r) \ge f f^{-1}(\operatorname{cl}(f(\rho), r)) \ge f(\operatorname{cl}(\operatorname{int}(\operatorname{cl}(\rho, r), r), r)).$$

 $(3) \Rightarrow (1)$. Let μ be a fuzzy r-closed set in Y. Then $f^{-1}(\mu)$ is a fuzzy set in X. By (3),

$$f(\text{cl}(\text{int}(\text{cl}(f^{-1}(\mu), r), r), r)) \le \text{cl}(ff^{-1}(\mu), r) \le \text{cl}(\mu, r) = \mu.$$

Hence we have

$$\operatorname{cl}(\operatorname{int}(\operatorname{cl}(f^{-1}(\mu), r), r), r) \le f^{-1}f(\operatorname{cl}(\operatorname{int}(\operatorname{cl}(f^{-1}(\mu), r), r), r))$$

 $\le f^{-1}(\mu).$

Thus $f^{-1}(\mu)$ is a fuzzy strongly r-semiclosed set in X and hence f is a fuzzy strongly r-semicontinuous map.

A fuzzy strongly r-semicontinuous map can be characterized as follows.

THEOREM 3.5. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a map and $r\in I_0$. Then the following statements are equivalent:

- (1) f is a fuzzy strongly r-semicontinuous map.
- (2) $f(\operatorname{sscl}(\rho, r)) \leq \operatorname{cl}(f(\rho), r)$ for each fuzzy set ρ in X.
- (3) $\operatorname{sscl}(f^{-1}(\mu), r) \leq f^{-1}(\operatorname{cl}(\mu, r))$ for each fuzzy set μ in Y.

(4) $f^{-1}(\operatorname{int}(\mu, r)) \leq \operatorname{ssint}(f^{-1}(\mu), r)$ for each fuzzy set μ in Y.

PROOF. (1) \Rightarrow (2). Let ρ be a fuzzy set in X. Since $\mathrm{cl}(f(\rho),r)$ is a fuzzy r-closed set in Y, $f^{-1}(\mathrm{cl}(f(\rho),r))$ is a fuzzy strongly r-semiclosed set in X. Thus

$$\operatorname{sscl}(\rho, r) \leq \operatorname{sscl}(f^{-1}f(\rho), r) \leq \operatorname{sscl}(f^{-1}(\operatorname{cl}(f(\rho), r)), r)$$
$$= f^{-1}(\operatorname{cl}(f(\rho), r)).$$

Hence

$$f(\operatorname{sscl}(\rho, r)) \le ff^{-1}(\operatorname{cl}(f(\rho), r)) \le \operatorname{cl}(f(\rho), r).$$

 $(2) \Rightarrow (3)$. Let μ be a fuzzy set in Y. By (2),

$$f(\operatorname{sscl}(f^{-1}(\mu), r)) \le \operatorname{cl}(ff^{-1}(\mu), r) \le \operatorname{cl}(\mu, r).$$

Thus

$$\operatorname{sscl}(f^{-1}(\mu), r) \le f^{-1}f(\operatorname{sscl}(f^{-1}(\mu), r)) \le f^{-1}(\operatorname{cl}(\mu, r)).$$

(3) \Rightarrow (4). Let μ be a fuzzy set in Y. Then μ^c is a fuzzy set in Y. By (3),

$${\rm sscl}(f^{-1}(\mu)^c,r) = {\rm sscl}(f^{-1}(\mu^c),r) \leq f^{-1}({\rm cl}(\mu^c,r)).$$

By Theorem 2.7,

$$f^{-1}(\mathrm{int}(\mu,r)) = f^{-1}(\mathrm{cl}(\mu^c,r))^c \leq \mathrm{sscl}(f^{-1}(\mu)^c,r)^c = \mathrm{ssint}(f^{-1}(\mu),r).$$

 $(4) \Rightarrow (1)$. Let μ be a fuzzy r-open set in Y. Then $\operatorname{int}(\mu, r) = \mu$. By (4),

$$f^{-1}(\mu) = f^{-1}(\operatorname{int}(\mu, r)) \le \operatorname{ssint}(f^{-1}(\mu), r) \le f^{-1}(\mu).$$

So $f^{-1}(\mu) = \operatorname{ssint}(f^{-1}(\mu), r)$ and hence $f^{-1}(\mu)$ is a fuzzy strongly r-semiopen set in X. Thus f is fuzzy strongly r-semicontinuous.

THEOREM 3.6. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a bijection and $r\in I_0$. Then f is a fuzzy strongly r-semicontinuous map if and only if $\operatorname{int}(f(\rho),r)\leq f(\operatorname{ssint}(\rho,r))$ for each fuzzy set ρ in X.

PROOF. Let f be a fuzzy strongly r-semicontinuous map and ρ a fuzzy set in X. Since $\operatorname{int}(f(\rho), r)$ is fuzzy r-open in Y, $f^{-1}(\operatorname{int}(f(\rho), r))$ is fuzzy strongly r-semiopen in X. Since f is one-to-one, we have

$$f^{-1}(\operatorname{int}(f(\rho), r)) \le \operatorname{ssint}(f^{-1}f(\rho), r) = \operatorname{ssint}(\rho, r).$$

Since f is onto, we have

$$\operatorname{int}(f(\rho),r) = ff^{-1}(\operatorname{int}(f(\rho),r)) \le f(\operatorname{ssint}(\rho,r)).$$

Conversely, let μ be a fuzzy r-open set in Y. Then $\operatorname{int}(\mu, r) = \mu$. Since f is onto,

$$f(\text{ssint}(f^{-1}(\mu), r)) \ge \text{int}(ff^{-1}(\mu), r) = \text{int}(\mu, r) = \mu.$$

Since f is one-to-one, we have

$$f^{-1}(\mu) \le f^{-1}f(\operatorname{ssint}(f^{-1}(\mu), r)) = \operatorname{ssint}(f^{-1}(\mu), r) \le f^{-1}(\mu).$$

So $f^{-1}(\mu) = \operatorname{ssint}(f^{-1}(\mu), r)$ and hence $f^{-1}(\mu)$ is a fuzzy strongly r-semiopen set in X. Thus f is fuzzy strongly r-semicontinuous.

The next theorem provides alternative characterizations of a fuzzy strongly r-semiopen map.

THEOREM 3.7. Let $f:(X,T)\to (Y,\mathcal{U})$ be a map and $r\in I_0$. Then the following statements are equivalent:

- (1) f is a fuzzy strongly r-semiopen map.
- (2) $f(\operatorname{int}(\rho, r)) \leq \operatorname{ssint}(f(\rho), r)$ for each fuzzy set ρ in X.
- (3) $\operatorname{int}(f^{-1}(\mu), r) \leq f^{-1}(\operatorname{ssint}(\mu, r))$ for each fuzzy set μ in Y.

PROOF. (1) \Rightarrow (2). Let ρ be a fuzzy set in X. Clearly $\operatorname{int}(\rho, r)$ is a fuzzy r-open set in X. Since f is a fuzzy strongly r-semiopen map, $f(\operatorname{int}(\rho, r))$ is a fuzzy strongly r-semiopen set in Y. Thus

$$f(\operatorname{int}(\rho, r)) = \operatorname{ssint}(f(\operatorname{int}(\rho, r)), r) \leq \operatorname{ssint}(f(\rho), r).$$

(2) \Rightarrow (3). Let μ be a fuzzy set in Y. Then $f^{-1}(\mu)$ is a fuzzy set in X. By (2),

$$f(\operatorname{int}(f^{-1}(\mu), r)) \le \operatorname{ssint}(ff^{-1}(\mu), r) \le \operatorname{ssint}(\mu, r).$$

Thus we have

$$\operatorname{int}(f^{-1}(\mu), r) \leq f^{-1}f(\operatorname{int}(f^{-1}(\mu), r)) \leq f^{-1}(\operatorname{ssint}(\mu, r)).$$

 $(3) \Rightarrow (1)$. Let ρ be a fuzzy r-open set in X. Then $\operatorname{int}(\rho, r) = \rho$ and $f(\rho)$ is a fuzzy set in Y. By (3),

$$\rho \ = \ \operatorname{int}(\rho,r) \le \operatorname{int}(f^{-1}f(\rho),r) \ \le \ f^{-1}(\operatorname{ssint}(f(\rho),r)).$$

Hence we have

$$f(\rho) \le ff^{-1}(\operatorname{ssint}(f(\rho), r)) \le \operatorname{ssint}(f(\rho), r) \le f(\rho).$$

Thus $f(\rho) = \operatorname{ssint}(f(\rho), r)$ and hence $f(\rho)$ is a fuzzy strongly r-semiopen set in Y. Therefore f is fuzzy strongly r-semiopen.

A fuzzy strongly r-semiclosed map can be characterized as follows.

THEOREM 3.8. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a map and $r\in I_0$. Then the following statements are equivalent:

- (1) f is a fuzzy strongly r-semiclosed map.
- (2) $\operatorname{sscl}(f(\rho), r) \leq f(\operatorname{cl}(\rho, r))$ for each fuzzy set ρ in X.

PROOF. (1) \Rightarrow (2). Let ρ be a fuzzy set in X. Clearly $\operatorname{cl}(\rho, r)$ is a fuzzy r-closed set in X. Since f is a fuzzy strongly r-semiclosed map, $f(\operatorname{cl}(\rho, r))$ is a fuzzy strongly r-semiclosed set of Y. Thus

$$\operatorname{sscl}(f(\rho), r) \leq \operatorname{sscl}(f(\operatorname{cl}(\rho, r)), r) = f(\operatorname{cl}(\rho, r)).$$

(2) \Rightarrow (1). Let ρ be a fuzzy r-closed set in X. Then $\mathrm{cl}(\rho,r)=\rho$. By (2),

$$\operatorname{sscl}(f(\rho), r) \le f(\operatorname{cl}(\rho, r)) = f(\rho) \le \operatorname{sscl}(f(\rho), r).$$

Thus $f(\rho) = \operatorname{sscl}(f(\rho), r)$ and hence $f(\rho)$ is a fuzzy strongly r-semiclosed set in Y. Therefore f is fuzzy strongly r-semiclosed.

THEOREM 3.9. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a bijection and $r\in I_0$. Then f is a fuzzy strongly r-semiclosed map if and only if $f^{-1}(\operatorname{sscl}(\mu,r))$ $\leq \operatorname{cl}(f^{-1}(\mu),r)$ for each fuzzy set μ in Y.

PROOF. Let f be a fuzzy strongly r-semiclosed map and μ a fuzzy set in Y. Then $f^{-1}(\mu)$ is a fuzzy set in X. Since f is onto,

$$\operatorname{sscl}(\mu, r) = \operatorname{sscl}(ff^{-1}(\mu), r) \le f(\operatorname{cl}(f^{-1}(\mu), r).$$

Since f is one-to-one, we have

$$f^{-1}(\operatorname{sscl}(\mu, r)) \le f^{-1}f(\operatorname{cl}(f^{-1}(\mu), r)) = \operatorname{cl}(f^{-1}(\mu), r).$$

Conversely, let ρ be a fuzzy r-closed set in X. Then $\operatorname{cl}(\rho, r) = \rho$. Since f is one-to-one,

$$f^{-1}(\mathrm{sscl}(f(\rho),r)) \leq \mathrm{cl}(f^{-1}f(\rho),r) = \mathrm{cl}(\rho,r) = \rho.$$

Since f is onto, we have

$$f(\rho) \ge ff^{-1}(\operatorname{sscl}(f(\rho), r)) = \operatorname{sscl}(f(\rho), r) \ge f(\rho).$$

Thus $f(\rho) = \operatorname{sscl}(f(\rho), r)$ and hence $f(\rho)$ is a fuzzy strongly r-semiclosed set in Y. Therefore f is fuzzy strongly r-semiclosed.

THEOREM 3.10. Let $f:(X,\mathcal{T}) \to (Y,\mathcal{U})$ be a map from a fuzzy topological space X to a fuzzy topological space Y and $r \in I_0$. Then f is fuzzy strongly r-semicontinuous (r-semiopen, r-semiclosed) if and only if $f:(X,\mathcal{T}_r) \to (Y,\mathcal{U}_r)$ is fuzzy strongly semicontinuous (semiopen, semiclosed).

PROOF. Straightforward.

THEOREM 3.11. Let $f:(X,T) \to (Y,U)$ be a map from a Chang's fuzzy topological space X to a Chang's fuzzy topological space Y and $r \in I_0$. Then f is fuzzy strongly semicontinuous (semiopen, semiclosed) if and only if $f:(X,T^r) \to (Y,U^r)$ is fuzzy strongly r-semicontinuous (r-semiopen, r-semiclosed).

PROOF. Straightforward.

REMARK 3.12. By the above two theorems, we know that the concept of a fuzzy strongly r-semicontinuous(r-semiopen, r-semiclosed, respectively) map is a generalization of the concept of a fuzzy strongly semicontinuous(semiopen, semiclosed, respectively) map.

References

- [1] K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), 14-32.
- [2] S.-Z. Bai, Fuzzy pre-semiopen sets and fuzzy pre-semicontinuity, Proc. ICIS'92 (1992), 918-920.
- [3] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [4] K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, Gradation of openness: Fuzzy topology, Fuzzy Sets and Systems 49 (1992), 237-242.
- [5] R. N. Hazra, S. K. Samanta, and K. C. Chattopadhyay, Fuzzy topology redefined, Fuzzy Sets and Systems 45 (1992), 79–82.
- [6] S. J. Lee and E. P. Lee, Fuzzy r-continuous and fuzzy r-semicontinuous maps, International Journal of Mathematics and Mathematical Sciences 27 (2001), no. 1, 53–63.
- [7] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56 (1976), 621–633.
- [8] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371–375.
- [9] A. P. Sostak, On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Janos Palermo, Sr. II 11 (1985), 89–103.
- [10] ______, Two decades of fuzzy topology: basic ideas, notions, and results, Russian Mathematical Surveys 44 (1989), no. 6, 125–186, (tranlated from Russian).
- [11] T. H. Yalvaç, Semi-interior and semi-closure of a fuzzy set, J. Math. Anal. Appl. 132 (1988), 356–364.

Seok Jong Lee
Department of Mathematics
Chungbuk National University
Cheongju 361-763, Korea
E-mail: sjlee@chungbuk.ac.kr

Eun Pyo Lee Department of Mathematics Seonam University Namwon 590-711, Korea *E-mail*: eplee@tiger.seonam.ac.kr