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FUZZY G-CLOSURE OPERATORS
YonG CHAN KiM AND JuNGg M1 Ko

ABSTRACT. We introduce a fuzzy g-closure operator induced by a
fuzzy topological space in view of the definition of Sostak [13]. We
show that it is a fuzzy closure operator. Furthermore, it induces
a fuzzy topology which is finer than a given fuzzy topology. We
investigate some properties of fuzzy g-closure operators.

1. Introduction and preliminaries

Sostak [13] introduced the fuzzy topology as an extension of Chang’s
fuzzy topology [2]. It has been developed in many directions (3, 4, 7-
10]. Balasubramanian and Sundaram [1] gave the concept of generalized
fuzzy closed sets in a Chang’s fuzzy topology as an extension of gener-
alized closed sets of Levine [11] in topological spaces.

In this paper, we introduce a fuzzy g-closure operator induced by
Sostak’s fuzzy topological space. We show that it is a fuzzy closure
operator. Furthermore, it induces a fuzzy topology which is finer than
a given fuzzy topology. We investigate some properties of (generalized)
fuzzy continuous maps and fuzzy generalized irresolute maps. Moreover,
we study the relationship between (resp. strongly) r-closed graphs and
r-FT; (resp. r-FT;, ) spaces.

Throughout this paper, let X be a nonempty set, I = [0, 1], Iy = (0, 1]
and IX be the family of all fuzzy sets. For a € I, a(r) =aforallze X.
For x € X and t € Iy, a fuzzy point z; is defined by

t ify==x

xT =
t(v) { 0 ify#zx.
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Let Pt(X) be the family of all fuzzy points in X. For u, A € IX, p is
called quasi-coincident with A, denoted by p g A, if u(z) + A(z) > 1
for some z € X, otherwise we write u § A. Let x4 be a characteristic
function for A.

DEFINITION 1.1 ([13]). A function 7 : I* — T is called a fuzzy topol-
ogy on X if it satisfies the following conditions:
(01) 7(0) = (1) =1,
(02) 7(p1 A pz) > 7(p1) A 7(p2), for any pi, pz € I,
(03) 7(Vier i) > Nier 7(1s), for any {ps}ier C 1.
The pair (X, 7) is called a fuzzy topological space (for short, fts).

DEFINITION 1.2 ([3, 10]). A function C : I* x Iy — I¥ is called a
fuzzy closure operator if it satisfies the following conditions: for \, u € IX
and r, s € Iy,

(C1) C(0,r) =
(C2) A < C(\,7),
(C3) C(A\, ) VC(p,r) =C(AV p,1),

(C4) C(\, 1) SC(A8),ifr <o,
(C5) C(C(\ ), r)=C(\ 7).

THEOREM 1.3 ([3, 10]). Let C be a fuzzy closure operator on X.
Define a function ¢ : I — I on X by

o) =\/{rel|CT-\r)=T-A}

Then 7¢ is a fuzzy topology on X.

THEOREM 1.4 ([3, 8, 10]). Let (X, 7) be a fts. We define operators
C, I : IX x Ip — IX as follows:

CrAr) = Npel* | A< p,rT-p) =7},

L(\r)= \/{u eIX | u <\ r(p) >}

Then:
(1) C; is a fuzzy closure operator.
(2) TC, = T.

(3) (T —X\r)=1-C,(\7), foreachr € Iy, A € IX.
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DEFINITION 1.5 [9, 10]. Let 0 ¢ © be a subset of I*. A func-
tion B:0 — I is called a fuzzy basis on X if it satisfies the following
conditions:

(B1) B(1) = 1,

(B2) B(p1 A p2) = B(p1) A B(pz), for all p1, pz € ©.

THEOREM 1.6 [9, 10]. Let 8 : © — I be a fuzzy basis on X. For
each y € I, we define the function 75 : I — I as follows:

VAAjea B(ri)} i =V ;ep py, for {nitien C O,
Ta(p) =4 1 ifp=0,
0 otherwise.

Then

(1) (X, 1) is a fuzzy topological space.

(2) A map f:(Y,7") — (X, 73) is fuzzy continuous if and only if for
each € ©, 7/ (f (1) > B(w).

THEOREM 1.7 [9, 10]|. Let {(Xi,7)}ier be a family of fuzzy topo-
logical spaces, X a set and for eachi € T, f; + X — X; a function. Let

O={0#u= /\?zlfk_jl(vkj) | T, (vi;) > 0 for all k; € K}

for every finite index sets K = {ky,--- ,k,} C I'. Define the function
8:©—1onX by

ﬁ(:u') = \/{/\;'L:lﬂﬁj (ij) | n= A?:lfk_jl(yk‘j)}

for every finite index sets K = {k1,--- ,kn} CT'. Then:

(1) B is a fuzzy basis on X.

(2) The fuzzy topology 73 generated by (3 is the coarsest fuzzy topol-
ogy on X which for each i € ', f; is fuzzy continuous.

(3) A function f : (Y, 7'} — (X, 73) is fuzzy continuous if and only if
foreachi €T, fiof:(Y,7") — (X;,7;) is fuzzy continuous.

Let (X, 7) be a fuzzy topological space and A be a subset of X. The
pair (A, T4) is said to be a subspace of (X, T) if 74 is endowed with
the coarsest fuzzy topology on A for which the inclusion map ¢ is fuzzy
continuous.

Let X be the product [[, - X; of the family {(X;, ;) | i € T'} of fuzzy
topological spaces. The coarsest fuzzy topology ™ = ®;er7 on X for
which each the projections m; : X — X is fuzzy continuous is called the
product fuzzy topology of {7; | i € T}, and (X, 7) is called the product
Sfuzzy topology space.
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2. Fuzzy g-closure operators

DEFINITION 2.1. Let (X,7) be a fts , A\, u € IX and r € I,.

(1) A fuzzy set A is called r-generalized fuzzy closed (for short, r-gfc)
if C-(\,s) < u whenever A < pand 7(u) > sforall0 < s <r.

(2) A fuzzy set X is called r-generalized fuzzy open (for short, r-gfo)
if T — X is r-gfc.

THEOREM 2.2. Let (X, 7) be a fts.

(1) If Ay and X\ are r-gfc sets, then A\, V Ag is a r-gfc set.

(2) If X is r-gfc set and A < p < C-(A,r), then p is a r-gfc set.

(38) If (1 — A) >r and r € Iy, then X is a r-gfc set.

(%) X is r-gfo if and only if u < I.(\,7) whenever u < X and 7(1—p) >

(5) If \y and Ay are r-gfo sets, then A\ A A2 is a r-gfo set.
(6) If I, (\,7) < u < X\ and X is r-gfo, then p is r-gfo.
(7) If 7(\) > r and r € Iy, then X a r-gfo set.

PROOF. (1) Let A\; and A; be r-gfc sets and \; V Ay < p such that
7(pu) = s, for 0 < s <r. For ¢ € {1,2}, A; < p such that 7(u) > s, for
0 < s < r, we have C,(\;,s) < u. By (C3) of Definition 1.2, it implies,
for0<s<r,

CT(/\l \ )\Za 3) = C‘r(/\la 8) \4 CT(AZa S) < 28
Hence A1 V Ag is r-gfc.

(2) For pu < p such that 7(p) > s, for 0 < s < r, since A is r-gic set

and A < p, A < p implies C, (), s) < p. Also, p < C,(}, s) implies
C‘r(,u, 5) < CT(CT(/\ys)a .S’) = C‘r(/\a 3) <p
Hence p is r-gfc. Others are easily proved. il

DEFINITION 2.3. Let (X, 7) be a fts. A fuzzy g-closure operator in-
duced by (X, ) is a map GC; : IX x Iy — IX as follows:

GC (A1) = /\{u eI | A< p, pisr-gfe).
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THEOREM 2.4. Let (X, 7) be a fts. Then it holds the following prop-
erties.

(1) GC; is a fuzzy closure operator such that GCr(\, 1) < Cr(A,r)
for \ € I*X andr € Iy.

(2) Define a function 7g : I* — I on X by

e\ =\/{reI|GC,(1-\r)=T-A}
Then ¢ is a fuzzy topology on X such that 7(\) < 7g()) for all A € T*.
Proor. (1) (Cl), (C2) and (C4) are easily proved from the definition

of GC,.
(C3) Since A, u < AV p, we have

GCr(\ 1)V GC: (1) < GCr(AV p, 7).
Suppose GC, (A, r)VGC;(p,7) 2 GCr(AV p,r). There exists € X and
t € (0,1) such that
(A) GCr(A,7)(z) VGCr (1) (z) <t < GCL(AV p,1)(z).
Since GC, (A, 7)(z) < t and GC;(u,r)(x) < t, there exist r-gfc sets A, i1
with A < A1 and p < py such that
Aifz) < typa(x) < ¢t

Since AV u < A1V pp and Ay V pg is r-gfc from Theorem 2.2 (1), we have
GCr(AV p,r)(z) < (A1 V pu1)(z) < t. It is a contradiction for (A).

(C5) From (C2) and (C3), we have GC,(\,r) < GC(GC(\,7),7).
Suppose

GC.(\ 1) 2 GC-(GC-(A,r),T).
There exist z € X and ¢ € (0, 1) such that
(B) GC,(\,7)(z) <t < GC(GC (A, 1), 7)(z).
Since GC,(\,r)(x) < t, there exists r-gfc set A\; with A < A such that
GCr (A1) (x) < Ai(x) < t.

Since A < A1, we have GC; (A, r) < A1. Again, GC(GC.(\,7),r) < Aq.
Hence GC,(GC, (A, r),r)(z) < Aj(z) < t. It is a contradiction for (B).

Thus,
GC (A, r) > GC(GC-(A,1),T).
Thus, GC, is a fuzzy closure operator. Since C,(\,r) is r-gfc, then
GC,(\,r) < C-(\,1).
(2) By Theorem 1.3, 7¢ is a fuzzy topology on X. By (1), C,(1 —
A7) =1~ X implies GC-(T — A\,7) =1 — X\. Thus, 7(A\) < 7g()) for all
e IX. O
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ExXAMPLE 2.5. Let X be a nonempty set. We define a fuzzy topology
7 : I%X — I as follows:

(1 ifA=0or1,
3 ifA=03,
TN =4 i ifA=035,
: ifA=086,
0 otherwise.

\

(1) I04<A<05and0<r<i, \is r-gfe.
(2)IfA=05and 0 <r <1, Xisrgfe.

(3) If A > 0.6 and r € Iy, X is r-gfc.

We can obtain a fuzzy topology 7¢ : IX — I as follows:
ifA=1,

if 0.5 < A < 0.6,

if A\ =105,

if A <04,

otherwise.

(

Ta(A) =

O e i e

\

Moreover, 7()\) < 7g()) for all X € IX.
NotaTION 2.6. Let (X, 7) be a fts and z; € Pt(X). We denote

Qr(we,r) ={peI™ |z qp, m(u) 27},

Gr(s,r) = {p € I |z q pu, pis r-glo}.

DEFINITION 2.7. Let (X,7) be a fts , A, u € IX and 7 € I,.

(1) z; is called a r-cluster point of A if for each u € Q,(z¢,7), we have
Bg A

(2) z; is called a rg-cluster point of A if for each u € G (x¢,r), we
have p g A.

THEOREM 2.8. Let (X, 7) be a fts.

(1) cC ( ry = \{z: € Pt(X) | z: is a r-cluster point of \ }.
(2) G ( r) = \{z: € Pt(X) | x4 is a rg-cluster point of \}.
(3) z; is a r—clust;er point of X\ if and only if z; € C,(\, ).

(4) z; is a rg-cluster point of X if and only if x; € GC. (A, 7).
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PRrROOF. (1) and (3) are similarly proved as following (2) and (4).

(2) Put p = \/{z: € Pt(X) | x; is a rg-cluster point of \}.

Suppose GCr(A,7) £ p. Then there exists z € X and t € (0,1) such
that

(C) GC.(\7)(z) >t > pl).

Since p(z) < t, then x; is not a rg- cluster point of A. There exists p €
G(z¢,7) with A\gu. So, A <1 — p with r-gfo T — u implies GC, (A, 7)(z) <
(1 — p)(z) < t. It is a contradiction for (C'). Hence GC,(\,7) < p.

Suppose GC,(A,r) 2 p. Then there exists z € X and s € (0, 1) such
that

(D) GC-(\,7)(y) < s < p(y).

Since GC-(A,7)(y) < s, by the definition of GC;, there exists r-gfc
p € I with X\ < p such that

GC(M\ ) (y) < ul(y) < s < p(y).

There exists 1 — u € G(ys,7) with A g (1 — ). Hence y, is not a rg-
cluster point of . It is a contradiction for (D). So, GC-(\,7) > p.

(4) (=) It is trivial.

(<) Let z; be not a rg- cluster point of A. There exists p € G, (x¢,7)
such that g A, that is, A <1 — u. It implies

GO (A r)(z) < (T— p)(z) < t.

Thus, z; € GC-(\, 7). O

3. Strongly r-closed graphs and r-closed graphs

DEeFINITION 3.1. Let (X,7) and (Y,n) be fts’s. Let f : (X,7) —
(Y,n) be a function.

(1) f is called fuzzy continuous if n(u) < 7(f~(u)) for each u € IV.

(2) f is called generalized fuzzy continuous (for short, gf-continuous)
if f~1(u) is r-gfc for n(1 —p) > r.

(3) f is called generalized fuzzy irresolute (for short, gf-irresolute) if
fH(w) is r-gfc for each r-gfc set u € IY.
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THEOREM 3.2. Let (X, ) and (Y,n) be fts’s satisfying the condition:
(T) 7¢(1 = \) > r implies GC,(\,7) = A.

Then the following statements are equivalent.

(1) f:(X,7¢) — (Y,ng) is fuzzy continuous.

(2) F(GC-(\,7)) < GCH(f(A),7), for each A € I* and r € I,.

(3) GC(f~Y(u),r) < FHGCy(u,1)), for each p € IY andr € I,.

PROOF. (1) = (2). Suppose there exist A € I* and 7 € Ij such that
F(GC-(A, ) £ GCr(f(A),7).
Then there exist y € Y and t € Iy such that
FGC-(Am))(y) >t > GCy(f(X),7)(y)

If f~1({y}) =0, it is a contradiction since f(GC,(\,7))(y) = 0.
If f~1({y}) # 0, there exists z € f~({y}) such that

(B)  fGC-(A\n)(y) 2 GCr(A,r)(z) >t > GCp(f(A),7)(f (2))-

Since GC,(f(N),r)(f(z)) < t, by the definition of GC,), there exists r-gfc
p € IV with f()\) < p such that

(F) GCH(f(N), ) f(z)) < u(f(x)) <t.

Since A < f~1(u), GC-(f~'(n),7) = GCr(A, 7). By (E) and (F),
GC-(f7Hw),r)(@) 2 GCr (N 7)(2) > t > p(f(x)) = f(u)(2).

By (T), GC-(f~*(w),7) # f~"(p) implies 76(1 ~ f~'(n)) < 7. More-

over, ng(1 — p) > r because GC;(u,r) = p. So, ng(L —p) > r >

¢(f~1(1 — p)). Hence f : (X, 7¢) — (Y,ng) is not fuzzy continuous.
(2) = (3). By (2), put A = f~'(u). Since f(f~' (1)) < p, then

GC-(f M), r) < FTHAGC(F7Hw), ™)) < fFHGCy(p, 7).

(3) = (1). Since GC,(u,r) = p implies GC-(f~1(w),r) = f~(w),
we have 7¢(1— f~H(u))=1¢(f (T ~-pn)) > ng(T —u) forall p e I¥. O

THEOREM 3.3. Let (X, 7) and (Y,n) be fts’s. If f : (X,7) — (Y,n)
is gf-irresolute, then f : (X, 7¢) — (Y, ng) is fuzzy continuous.
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PROOF. Suppose there exist p € IY such that 7¢(f~1(u)) 2 nc(w).
Then there exists r € Iy with GC,(T — u,7) =1 — p such that

(@) To(f7H () <7 < nalp).
Since GC,(1 — p,7) =1 — p and f is gf-irresolute,
I =p) = fH(GCH (T = p,7))
= f‘l(/\{p el |T-p<ppis r-gfc})
NF ) eI |T—p<p,p is r-ghec}
> AU el 71 T-w) < 7N ) fHp) s r-gfe)
> GC-(T— f~H(u),r).

It implies GC-(1— f~Y(u),r) = 1— f~!(u) from Theorem 2.4(1). Hence
To(f~1 (1)) > r. It is a contradiction for (G). O

ExAMPLE 3.4. The converse of Theorem 3.3 is not true. Let X =
{a,b} be a set. We define fuzzy topologies 7,7 : IX — I as follows:

1 ifA=0or1, 1 ifx=0or1,
T(A) = % ifA=ags, n(A)= % if A = ags,
0 otherwise, 0 otherwise.

Then an identity function idx : (X, 7) — (X, n) is not fuzzy continuous.
A fuzzy point ag.7 is a 3- gfc set on (X,n) but ag.7 is not a £- gfc set on
(X, 7) because

1 _
ag.7 < aps,T(aps) > 5,0< s < 5,01(00.7,8) =1Zaps.

Thus, idx : (X,7) — (X, n) is not a gf-irresolute map.
(1) For a; with 0 <t < 0.8, a; V b, is 1-gfc on (X, 7). Thus,

GCT(at, 1) = /\ (at \% bs) = Q3 \% /\ bs = Qg.
sely s€lg

(2) For A € I* —{a; | 0 <t < 0.8}, Mis a l-gfcset. So, GC-(\,1) = A.
By (1) and (2), GC.(A\,7) = A for all A € I and r € Iy. Similarly,
GC,(A\,r) = Xforall A\ € I and r € I,. We can obtain fuzzy topologies

Tg()\) = 776'()‘) =1, Vie Ix.

The identity function idy : (X, 7¢) — (X, n¢) is fuzzy continuous.
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EXAMPLE 3.5. We define fuzzy topologies 7,m : IX — I as follows:

1 ifx=0o0rl, L fA=DorT

L =07 L #A=Dor],
T(A) = P nA) =4 5 ifA=04,

2 S 0 otherwise.

0 otherwise,

We can obtain fuzzy topologies 7g, g : IX — I as follows:

1 if0<A<03, _ -
| 0 <\ <06 L ifr=0orl,
if 0. ] _ _
= = ’ = i A .
Ta(A) 1 0T <A ne(A) 1 ifOo< . < 0.6,
. 0 otherwise.
0 otherwise,

Then an identity function idx : (X,7) — (X,n) is fuzzy continuous.
But idx : (X, 7¢) — (X, n¢) is not fuzzy continuous because

0 = 7¢(0-35) < 7¢(0:35) = 1.

DEFINITION 3.6. A fts (X, 7) is called:

(1) r-FT; if for each z; # ys, there exist u; € Q,(x¢,7) and ps €
Q. (ys,r) such that u; A up = 0.

(2) r-FTy, if for each x; # ys, there exist py € @, (2i,7) and py €

Q+(ys, ) such that C,(u1,7) A Cr(u2,7) = 0.

THEOREM 3.7. Let (A,T4) be a subspace of (X,7) and R: (X, 7) —
(A, Ta) be a gf-continuous retraction ,that is, R(a) = a for alla € A. If
(X, 1) is r-FTy, then GC-(xa,7) = Xa-

PROOF. Suppose GCr(xa,7) £ xa. Then there exist z € X and
t € (0,1) such that

GCr(xa,r)(z) >t > xalz).
Since xa(x) < ¢, then x ¢ A. So, R(z) # x implies R(x); # z;. Since

(X,7) is 1-FT, there exist u1 € Q;(R(z);,7) and pz € Qr(z¢,7) such
that g1 A pe = 0. Since i : (A,74) — (X, 7) is an inclusion map and

(i ) (R@) = (R(=))) +¢ > 1,
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then i~ '(u1) € Qr,(R(2)s,7). Since R : X — A is a gf-continuous
function, R™1(¢ 7! (1)) is r-gfo. Hence R™1(i~ (1)) € G, (@, 7). Fur-

thermore, since py € G, (x4,7), (R‘l(i_l(,ul)) A /JQ) € G, (x4,7). Since

GCr(xa,r)(x) > t, that is, z; € GCr(xa,T), by Theorem 2.8 (4), x; is
a rg- cluster point of y 4. Thus,

xa q (B7G7 () Aiz)-

So, there exists y € X such that

xa®) + (BTG 00)) Az ) () > 1.

It implies y € A and R(y) = y because R is a retraction. Hence

(R 1)) A ki2) (9) = i (R)) A ) = 1 (0) A aa(9) > 0.
It is a contradiction from g A po = 0. Thus, GCr(x4,7) = XA.- O

THEOREM 3.8. Let (X,7) and (Y,7n) be fis’s. Let f : X — Y be
a gf-continuous function which (Y,n) is r-FT, and Crg,(p,7) = p for
p € I**Y, Then GC,(m1 (1 A Xa(f))sT) = m1(p A Xa(s)), where G(f) =
{(z, f(x)) | « € X} and m is the projection of X x Y onto X.

PROOF. Suppose

GCH{mi(1 A xa)) ) € mlp A Xa)-

Then there exist z € X and t € (0,1) such that
(@) GCr(m (A X)) m)(@) 2 t > m(p A xa()) ().

Let A € Q. (z¢,7) and p € Q,(f(z)s,7) such that (71'1_1()\) A W{l(p)) €
Qron((z, f(x))s,r). Since f : X — Y is gf-continuous, then f~1(p) €

Gr(z¢,7). So, (AAf~H(p)) € G- (21, 7). Since z, € GC-{m1 (LAXG(1)),T),
we have

AA S P) g mu A xap)-
So, there exists 2 € X such that

AAF T eN(2) + (e Axae)(2) > L.
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Since 71 (1 A xa(f))(2) > 0, we have

AAFHPN(2) + ulz, £(2)) > 1.

It implies
(771N A3 (0)) (2, £(2)) + mlz £(2)) > L

Thus,
(7' ATTHR) g

Moreover, (wfl()\) A ﬂgl(p)) € Qron((z, f(x)):,7). Hence

(z, f(2)): € Cran(p,r) = p, (2, f(2))t € Xc(5)-

It implies z; € (1 A Xg(p))- It is a contradiction for (G). O

THEOREM 3.9. Let (X,7) and (Y,n) be fts’s. If f : X — Y has a
r-closed graph, that is, Crgn(Xa(s),") = Xc(s) @and g : X — Y be a gf-
continuous, then GC;(xa,r) = xa where A= {z € X | f(z) = g(z)}.

PROOF. Since xa = m1(Xc(f) A Xa(g)) and Cren(Xa(s):T) = Xa(f):
by Theorem 3.8, we have GCr(x4a,7) = xa- O

THEOREM 3.10. Let (X,7) and (Y,n) be fts’s. Let f: X — Y bea
fuzzy continuous function which (Y, 1) is r-FT3. Then:

(1) Cren(xc()sT) = xa(p) where G(f) = {(z, f(z)) | z € X}.

(2) If g : X — Y is a gf-continuous function, then GCr(xa,T) = X4
where A = {z € X | f(z) = g(x)}.

PrOOF. (1) Suppose Cren(Xa(s)7) £ Xa(s)- Then there exist (z,y)
€ X xY and t € (0,1) such that

Cren(Xa(), ™)@ Y) 2t > Xxa) (T, Y)-

Since xa(p) (T, y) < t, (z,y) € G(f), that is, f(x) # y. Since (Y,7) is r-

FT,, for f(x); # y:, there exist A € Q,(y:,7) and p € Q,(f(z)¢,7) such

that A A u = 0. Since f is fuzzy continuous, then f~'(p) € Q-(z, 7).
On the other hand, since (z,y): € Cren(Xa(s),7), then (z,y); is 1-

cluster point of xg(s)- For m7 (f71(p)) A3 (A) € Qran((2,¥):,7), we

have
(7' N AT N) g xa(-
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There exists (a,b) € X x Y such that

(77 (o) A3 ) (@) + X (@,6) > 1.

Since xg(s)(a,b) =1, then b = f(a). So,
(71710 AT N ) (0,b) = p(F(2)) A A(f(a)) £D.

It is a contradiction for A A u = 0.
(2) It is easily proved from (1) and Theorem 3.9. O

LeMMA 3.11. Let (X,7) and (Y,n) be fts’s. Let f : X — Y be a
function. For u € I* and p € IV, we have the following properties:

(1) (77') 7 73 () T Xy if and only if f(u) A p=TD.

(2) Cren(xa(s):T) = Xa(y) if and only if for each z; € Pt(X),ys €
Pt(Y') with f(x) # y, there exist p € Q.(x¢,7) and p € Q,(ys,7) such
that f(u) Ap=0.

PROOF. (1) (=) Let f(u) A p # 0. There exists y € Y such that
f(w)(w) A p(y) > 0. By the definition of f(u), there exists z € f~1({y})
such that

F) @) A p(y) > p(x) A p(f(x)) > 0.

It implies
(77 ) A 732 (0)) (2. £(2)) + X0ty @, £ (@) > 1.

Thus, (7 (1) A3 (6)) @ X600
(<) Let <7r1'1(,u)/\7r2‘1(p)) q XG(f)- Then there exists (z,y) € X xY
such that
(Wfl(u) A 7T2‘1(/))) (z,9) + Xen (2,y) > 1.
Thus, y = f(z) with u(z) A p(f(z)) > 0. Tt implies f(u)(f(z)) A
p(f(z)) > 0. Thus, f(x) Ap#0.
(2) (=) Let z; € Pt(X),ys € Pt(Y) with f(z) #y. Put p=tAs.

Since (z,¥)p € xa(f) = Cren(Xa(s),7), by Theorem 2.8 (3), (z,y), is not
r-cluster point of x(s). So, there exist y € Q(xp,7) and p € Q,(yp,7)

with (71’1_1(;1,) A W{l(p)) € Qren((z,y)t,r) such that

(”1—1(#) A ﬂz_l(/’)) 7 XG(f)-
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By (1), it implies f(u) A p = 0. Furthermore, 1 € Q,(zp,7) and p €

Qn(Yp,7) imply p € Q-(z+,7) and p € Qn(ys, 7).
(<) Suppose Cren(Xa(f), ) £ Xe(y)- Then there exist (z,y) € X xY
and t € (0,1) such that

(H) Cron(xa(s), ) (@, y) >t > xa) (2, ).

Since x¢(5)(z,y) < t, then (z,y) € G(f), that is, f(z); # y;. There
exist 41 € Q,(z¢,7) and p € Q,(y:,7) such that f(u) Ap=0. By (1),

(Wf Hu) Amy 1(/))) aXG(5)-

Hence (z,y); is not a r-cluster point of xg(r). By Theorem 2.8 (3),
Cren(Xa(s),7)(z,y) <t. It is a contradiction for (H). Hence we have

Cren(Xa(f):T) = Xa(f)- O

THEOREM 3.12. Let (X, 7) and (Y,n) be fts’s. Let f: X — Y bea
fuzzy continuous injective function with CT®,7(X0( #):7) = Xc(s)- Then
(X,7) is r-FT5.

PrRoOOF. (1) (=) Let a,b € X with a # b. Then f(a) # f(b). So,
Xa(p)(a, f(b)) = 0. Since (a, f(b)): & Xa(s) = Cren(Xa(s),7), then
(a, f(b)): is not 1-cluster point of xg(s)- Then there exist u € Q- (a¢,7)
and p € Qq(f(b)e,7) with (77 () A5 (p)) € Qren((a, f(B))e,7) such
that

-1 -1 —
(7"1 (1) A3 (P)) d XG(f)-

By Lemma 3.11(1), f(u) A p = 0. Since f is fuzzy continuous, f~!(p

Q~ (bz,7) such that f(u) A f(f~'(p)) = 0. It implies f(u A f~'(p)) =
because f is injective. Therefore u A f~1(p) = 0.

O om

DEFINITION 3.13. Let (X, 7) and (Y,n) be fts’s. A function f : X —
Y has a strongly r-closed graph if for each xq(r)(z,y) = 0, there exist
1€ Q. (z4,7) and p € Qy(ys,r) such that (71’;1(,&) A wgl(Gc,,(p,r))) A
Xa(s) = 0.

The following corollaries is easily proved from Lemma 3.11.

COROLLARY 3.14. Let (X, 7) and (Y, n) be fts’s. A function f : X —
Y has a strongly r-closed graph if for each xq(s)(z,y) = 0, there exist

p € Q- (z,7) and p € Q,(ys,7) such that f(u) AGCy(p,r) =0.
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COROLLARY 3.15. Let (X,7) and (Y,n) be fts’s. If f : X — Y has
a strongly r-closed graph, then Cg,(Xxc(r),T) = Xc(s), that is, f has a
r-closed graph.

THEOREM 3.16. Let (X,7) and (Y,n) be fts’s. Let f : X — Y be
fuzzy continuous which (Y, n) is r-F'T, 1. Then f has a strongly r-closed
graph.

PROOF. Since xg(s)(z,y) = 0, (z,y) & G(f), that is, f(z) # .
Since (Y,7) is r-FTyy, for f(x): # ys, there exist A € Qu(ys,r) and

p € Q,(f(z)s, ) such that C,(A, 1) ACr{p,7) = 0. Since f: X — Y is
fuzzy continuous, f~1(p) € Q- (x;,r) such that

F(f7Hp) € p < Crlp, 7).

It implies f(f~'(p)) ACy(A, ) = 0. Since GC, (A, ) < Cyy(A, ), we have
F(f7(p)) AGCy(\,r) =0. Hence f has a strongly r-closed graph. O
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