FUZZY G-CLOSURE OPERATORS

YONG CHAN KIM AND JUNG MI KO

ABSTRACT. We introduce a fuzzy g-closure operator induced by a fuzzy topological space in view of the definition of Šostak [13]. We show that it is a fuzzy closure operator. Furthermore, it induces a fuzzy topology which is finer than a given fuzzy topology. We investigate some properties of fuzzy g-closure operators.

1. Introduction and preliminaries

Šostak [13] introduced the fuzzy topology as an extension of Chang's fuzzy topology [2]. It has been developed in many directions [3, 4, 7-10]. Balasubramanian and Sundaram [1] gave the concept of generalized fuzzy closed sets in a Chang's fuzzy topology as an extension of generalized closed sets of Levine [11] in topological spaces.

In this paper, we introduce a fuzzy g-closure operator induced by Šostak's fuzzy topological space. We show that it is a fuzzy closure operator. Furthermore, it induces a fuzzy topology which is finer than a given fuzzy topology. We investigate some properties of (generalized) fuzzy continuous maps and fuzzy generalized irresolute maps. Moreover, we study the relationship between (resp. strongly) r-closed graphs and r- FT_2 (resp. r- $FT_{2\frac{1}{2}}$) spaces.

Throughout this paper, let X be a nonempty set, I = [0, 1], $I_0 = (0, 1]$ and I^X be the family of all fuzzy sets. For $\alpha \in I$, $\overline{\alpha}(x) = \alpha$ for all $x \in X$. For $x \in X$ and $t \in I_0$, a fuzzy point x_t is defined by

$$x_t(y) = \begin{cases} t & \text{if } y = x \\ 0 & \text{if } y \neq x. \end{cases}$$

Received August 1, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 54A40, 54A05, 54C08.

Key words and phrases: fuzzy topology, r-generalized fuzzy closed sets, fuzzy g-closure operators, fuzzy continuous maps, generalized fuzzy continuous (irresolute) maps, r- FT_2 spaces, (strongly) r-closed graphs.

Let Pt(X) be the family of all fuzzy points in X. For $\mu, \lambda \in I^X$, μ is called quasi-coincident with λ , denoted by $\mu q \lambda$, if $\mu(x) + \lambda(x) > 1$ for some $x \in X$, otherwise we write $\mu \overline{q} \lambda$. Let χ_A be a characteristic function for A.

DEFINITION 1.1 ([13]). A function $\tau: I^X \to I$ is called a fuzzy topology on X if it satisfies the following conditions:

- (O1) $\tau(\overline{0}) = \tau(\overline{1}) = 1$,
- (O2) $\tau(\mu_1 \wedge \mu_2) \geq \tau(\mu_1) \wedge \tau(\mu_2)$, for any $\mu_1, \mu_2 \in I^X$,

(O3) $\tau(\bigvee_{i\in\Gamma}\mu_i) \geq \bigwedge_{i\in\Gamma}\tau(\mu_i)$, for any $\{\mu_i\}_{i\in\Gamma}\subset I^X$. The pair (X,τ) is called a fuzzy topological space (for short, fts).

DEFINITION 1.2 ([3, 10]). A function $C: I^X \times I_0 \to I^X$ is called a fuzzy closure operator if it satisfies the following conditions: for $\lambda, \mu \in I^X$ and $r, s \in I_0$,

- (C1) $C(\overline{0},r)=\overline{0},$
- (C2) $\lambda \leq C(\lambda, r)$,
- (C3) $C(\lambda, r) \vee C(\mu, r) = C(\lambda \vee \mu, r),$
- (C4) $C(\lambda, r) \leq C(\lambda, s)$, if $r \leq s$,
- (C5) $C(C(\lambda, r), r) = C(\lambda, r)$.

THEOREM 1.3 ([3, 10]). Let C be a fuzzy closure operator on X. Define a function $\tau_C: I^X \to I$ on X by

$$\tau_C(\lambda) = \bigvee \{r \in I \mid C(\overline{1} - \lambda, r) = \overline{1} - \lambda\}.$$

Then τ_C is a fuzzy topology on X.

THEOREM 1.4 ([3, 8, 10]). Let (X, τ) be a fts. We define operators $C_{\tau}, I_{\tau}: I^X \times I_0 \to I^X$ as follows:

$$C_{\tau}(\lambda, r) = \bigwedge \{ \mu \in I^X \mid \lambda \leq \mu, \tau(\overline{1} - \mu) \geq r \},$$

$$I_{\tau}(\lambda, r) = \bigvee \{ \mu \in I^X \mid \mu \le \lambda, \tau(\mu) \ge r \}.$$

Then:

- (1) C_{τ} is a fuzzy closure operator.
- (2) $\tau_{C_{\tau}} = \tau$.
- (3) $I_{\tau}(\overline{1} \lambda, r) = \overline{1} C_{\tau}(\lambda, r)$, for each $r \in I_0, \lambda \in I^X$.

DEFINITION 1.5 [9, 10]. Let $\overline{0} \notin \Theta$ be a subset of I^X . A function $\beta:\Theta \to I$ is called a *fuzzy basis* on X if it satisfies the following conditions:

(B1)
$$\beta(\overline{1}) = 1$$
,

(B2)
$$\beta(\mu_1 \wedge \mu_2) \geq \beta(\mu_1) \wedge \beta(\mu_2)$$
, for all $\mu_1, \mu_2 \in \Theta$.

THEOREM 1.6 [9, 10]. Let $\beta: \Theta \to I$ be a fuzzy basis on X. For each $\mu \in I^X$, we define the function $\tau_{\beta}: I^X \to I$ as follows:

$$\tau_{\beta}(\mu) = \begin{cases} \bigvee \{ \bigwedge_{j \in \Lambda} \beta(\mu_j) \} & \text{if } \mu = \bigvee_{j \in \Lambda} \mu_j, \text{ for } \{\mu_j\}_{j \in \Lambda} \subset \Theta, \\ 1 & \text{if } \mu = \overline{0}, \\ 0 & \text{otherwise.} \end{cases}$$

Then

- (1) (X, τ_{β}) is a fuzzy topological space.
- (2) A map $f:(Y,\tau')\to (X,\tau_\beta)$ is fuzzy continuous if and only if for each $\mu\in\Theta$, $\tau'(f^{-1}(\mu))\geq\beta(\mu)$.

THEOREM 1.7 [9, 10]. Let $\{(X_i, \tau_i)\}_{i \in \Gamma}$ be a family of fuzzy topological spaces, X a set and for each $i \in \Gamma$, $f_i : X \to X_i$ a function. Let

$$\Theta = \{ \overline{0} \neq \mu = \wedge_{j=1}^n f_{k_j}^{-1}(\nu_{k_j}) \mid \tau_{k_j}(\nu_{k_j}) > 0 \text{ for all } k_j \in K \}$$

for every finite index sets $K = \{k_1, \dots, k_n\} \subset \Gamma$. Define the function $\beta : \Theta \to I$ on X by

$$\beta(\mu) = \bigvee \{ \wedge_{j=1}^n \tau_{k_j}(\nu_{k_j}) \mid \mu = \wedge_{j=1}^n f_{k_j}^{-1}(\nu_{k_j}) \}$$

for every finite index sets $K = \{k_1, \dots, k_n\} \subset \Gamma$. Then:

- (1) β is a fuzzy basis on X.
- (2) The fuzzy topology τ_{β} generated by β is the coarsest fuzzy topology on X which for each $i \in \Gamma$, f_i is fuzzy continuous.
- (3) A function $f:(Y,\tau')\to (X,\tau_{\beta})$ is fuzzy continuous if and only if for each $i\in\Gamma$, $f_i\circ f:(Y,\tau')\to (X_i,\tau_i)$ is fuzzy continuous.

Let (X, τ) be a fuzzy topological space and A be a subset of X. The pair (A, τ_A) is said to be a *subspace* of (X, τ) if τ_A is endowed with the coarsest fuzzy topology on A for which the inclusion map i is fuzzy continuous.

Let X be the product $\prod_{i\in\Gamma} X_i$ of the family $\{(X_i, \tau_i) \mid i\in\Gamma\}$ of fuzzy topological spaces. The coarsest fuzzy topology $\tau = \bigotimes_{i\in\Gamma} \tau_i$ on X for which each the projections $\pi_i : X \to X_i$ is fuzzy continuous is called the product fuzzy topology of $\{\tau_i \mid i\in\Gamma\}$, and (X,τ) is called the product fuzzy topology space.

2. Fuzzy g-closure operators

DEFINITION 2.1. Let (X, τ) be a fts, $\lambda, \mu \in I^X$ and $r \in I_0$.

- (1) A fuzzy set λ is called r-generalized fuzzy closed (for short, r-gfc) if $C_{\tau}(\lambda, s) \leq \mu$ whenever $\lambda \leq \mu$ and $\tau(\mu) \geq s$ for all $0 < s \leq r$.
- (2) A fuzzy set λ is called *r*-generalized fuzzy open (for short, r-gfo) if $\overline{1} \lambda$ is r-gfc.

THEOREM 2.2. Let (X, τ) be a fts.

- (1) If λ_1 and λ_2 are r-gfc sets, then $\lambda_1 \vee \lambda_2$ is a r-gfc set.
- (2) If λ is r-gfc set and $\lambda \leq \mu \leq C_{\tau}(\lambda, r)$, then μ is a r-gfc set.
- (3) If $\tau(\overline{1} \lambda) \ge r$ and $r \in I_0$, then λ is a r-gfc set.
- (4) λ is r-gfo if and only if $\mu \leq I_{\tau}(\lambda, r)$ whenever $\mu \leq \lambda$ and $\tau(\overline{1} \mu) \geq r$.
 - (5) If λ_1 and λ_2 are r-gfo sets, then $\lambda_1 \wedge \lambda_2$ is a r-gfo set.
 - (6) If $I_{\tau}(\lambda, r) \leq \mu \leq \lambda$ and λ is r-gfo, then μ is r-gfo.
 - (7) If $\tau(\lambda) \geq r$ and $r \in I_0$, then λ a r-gfo set.

PROOF. (1) Let λ_1 and λ_2 be r-gfc sets and $\lambda_1 \vee \lambda_2 \leq \mu$ such that $\tau(\mu) \geq s$, for $0 < s \leq r$. For $i \in \{1, 2\}$, $\lambda_i \leq \mu$ such that $\tau(\mu) \geq s$, for $0 < s \leq r$, we have $C_{\tau}(\lambda_i, s) \leq \mu$. By (C3) of Definition 1.2, it implies, for $0 < s \leq r$,

$$C_{\tau}(\lambda_1 \vee \lambda_2, s) = C_{\tau}(\lambda_1, s) \vee C_{\tau}(\lambda_2, s) \leq \mu.$$

Hence $\lambda_1 \vee \lambda_2$ is r-gfc.

(2) For $\mu \leq \rho$ such that $\tau(\rho) \geq s$, for $0 < s \leq r$, since λ is r-gfc set and $\lambda \leq \mu$, $\lambda \leq \rho$ implies $C_{\tau}(\lambda, s) \leq \rho$. Also, $\mu \leq C_{\tau}(\lambda, s)$ implies

$$C_{\tau}(\mu, s) \le C_{\tau}(C_{\tau}(\lambda, s), s) = C_{\tau}(\lambda, s) \le \rho.$$

Hence μ is r-gfc. Others are easily proved.

DEFINITION 2.3. Let (X, τ) be a fts. A fuzzy g-closure operator induced by (X, τ) is a map $GC_{\tau}: I^X \times I_0 \to I^X$ as follows:

$$GC_{\tau}(\lambda, r) = \bigwedge \{ \mu \in I^X \mid \lambda \le \mu, \ \mu \text{ is r-gfc} \}.$$

THEOREM 2.4. Let (X, τ) be a fts. Then it holds the following properties.

- (1) GC_{τ} is a fuzzy closure operator such that $GC_{\tau}(\lambda, r) \leq C_{\tau}(\lambda, r)$ for $\lambda \in I^X$ and $r \in I_0$.
 - (2) Define a function $\tau_G: I^X \to I$ on X by

$$\tau_G(\lambda) = \bigvee \{r \in I \mid GC_{\tau}(\overline{1} - \lambda, r) = \overline{1} - \lambda\}.$$

Then τ_G is a fuzzy topology on X such that $\tau(\lambda) \leq \tau_G(\lambda)$ for all $\lambda \in I^X$.

PROOF. (1) (C1), (C2) and (C4) are easily proved from the definition of GC_{τ} .

(C3) Since $\lambda, \mu \leq \lambda \vee \mu$, we have

$$GC_{\tau}(\lambda, r) \vee GC_{\tau}(\mu, r) \leq GC_{\tau}(\lambda \vee \mu, r).$$

Suppose $GC_{\tau}(\lambda, r) \vee GC_{\tau}(\mu, r) \not\geq GC_{\tau}(\lambda \vee \mu, r)$. There exists $x \in X$ and $t \in (0, 1)$ such that

(A)
$$GC_{\tau}(\lambda, r)(x) \vee GC_{\tau}(\mu, r)(x) < t < GC_{\tau}(\lambda \vee \mu, r)(x).$$

Since $GC_{\tau}(\lambda, r)(x) < t$ and $GC_{\tau}(\mu, r)(x) < t$, there exist r-gfc sets λ_1, μ_1 with $\lambda \leq \lambda_1$ and $\mu \leq \mu_1$ such that

$$\lambda_1(x) < t, \mu_1(x) < t.$$

Since $\lambda \vee \mu \leq \lambda_1 \vee \mu_1$ and $\lambda_1 \vee \mu_1$ is r-gfc from Theorem 2.2 (1), we have $GC_{\tau}(\lambda \vee \mu, r)(x) \leq (\lambda_1 \vee \mu_1)(x) < t$. It is a contradiction for (A).

(C5) From (C2) and (C3), we have $GC_{\tau}(\lambda, r) \leq GC_{\tau}(GC_{\tau}(\lambda, r), r)$. Suppose

$$GC_{\tau}(\lambda, r) \not\geq GC_{\tau}(GC_{\tau}(\lambda, r), r).$$

There exist $x \in X$ and $t \in (0,1)$ such that

(B)
$$GC_{\tau}(\lambda, r)(x) < t < GC_{\tau}(GC_{\tau}(\lambda, r), r)(x).$$

Since $GC_{\tau}(\lambda, r)(x) < t$, there exists r-gfc set λ_1 with $\lambda \leq \lambda_1$ such that

$$GC_{\tau}(\lambda, r)(x) \leq \lambda_1(x) < t$$
.

Since $\lambda \leq \lambda_1$, we have $GC_{\tau}(\lambda, r) \leq \lambda_1$. Again, $GC_{\tau}(GC_{\tau}(\lambda, r), r) \leq \lambda_1$. Hence $GC_{\tau}(GC_{\tau}(\lambda, r), r)(x) \leq \lambda_1(x) < t$. It is a contradiction for (B). Thus,

$$GC_{\tau}(\lambda, r) \geq GC_{\tau}(GC_{\tau}(\lambda, r), r).$$

Thus, GC_{τ} is a fuzzy closure operator. Since $C_{\tau}(\lambda, r)$ is r-gfc, then $GC_{\tau}(\lambda, r) \leq C_{\tau}(\lambda, r)$.

(2) By Theorem 1.3, τ_G is a fuzzy topology on X. By (1), $C_{\tau}(\overline{1} - \lambda, r) = \overline{1} - \lambda$ implies $GC_{\tau}(\overline{1} - \lambda, r) = \overline{1} - \lambda$. Thus, $\tau(\lambda) \leq \tau_G(\lambda)$ for all $\lambda \in I^X$.

EXAMPLE 2.5. Let X be a nonempty set. We define a fuzzy topology $\tau: I^X \to I$ as follows:

$$\tau(\lambda) = \begin{cases} 1 & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{3} & \text{if } \lambda = \overline{0.3}, \\ \frac{1}{2} & \text{if } \lambda = \overline{0.5}, \\ \frac{1}{4} & \text{if } \lambda = \overline{0.6}, \\ 0 & \text{otherwise.} \end{cases}$$

- (1) If $\overline{0.4} \le \lambda < \overline{0.5}$ and $0 < r \le \frac{1}{4}$, λ is r-gfc.
- (2) If $\lambda = \overline{0.5}$ and $0 < r \le \frac{1}{2}$, λ is r-gfc.
- (3) If $\lambda > \overline{0.6}$ and $r \in I_0$, λ is r-gfc.

We can obtain a fuzzy topology $\tau_G: I^X \to I$ as follows:

$$\tau_G(\lambda) = \begin{cases} 1 & \text{if } \lambda = \overline{1}, \\ \frac{1}{4} & \text{if } \overline{0.5} < \lambda \leq \overline{0.6}, \\ \frac{1}{2} & \text{if } \lambda = \overline{0.5}, \\ 1 & \text{if } \lambda < \overline{0.4}, \\ 0 & \text{otherwise.} \end{cases}$$

Moreover, $\tau(\lambda) \leq \tau_G(\lambda)$ for all $\lambda \in I^X$.

NOTATION 2.6. Let (X, τ) be a fts and $x_t \in Pt(X)$. We denote

$$Q_{\tau}(x_t, r) = \{ \mu \in I^X \mid x_t \ q \ \mu, \ \tau(\mu) \ge r \},$$

$$\mathcal{G}_{\tau}(x_t, r) = \{ \mu \in I^X \mid x_t \ q \ \mu, \ \mu \text{ is r-gfo} \}.$$

DEFINITION 2.7. Let (X, τ) be a fts, $\lambda, \mu \in I^X$ and $r \in I_0$.

- (1) x_t is called a r-cluster point of λ if for each $\mu \in Q_\tau(x_t, r)$, we have $\mu \neq \lambda$.
- (2) x_t is called a rg-cluster point of λ if for each $\mu \in \mathcal{G}_{\tau}(x_t, r)$, we have $\mu \neq \lambda$.

THEOREM 2.8. Let (X, τ) be a fts.

- (1) $C_{\tau}(\lambda, r) = \bigvee \{x_t \in Pt(X) \mid x_t \text{ is a r-cluster point of } \lambda \}.$
- (2) $GC_{\tau}(\lambda, r) = \bigvee \{x_t \in Pt(X) \mid x_t \text{ is a rg-cluster point of } \lambda \}.$
- (3) x_t is a r-cluster point of λ if and only if $x_t \in C_{\tau}(\lambda, r)$.
- (4) x_t is a rg-cluster point of λ if and only if $x_t \in GC_{\tau}(\lambda, r)$.

PROOF. (1) and (3) are similarly proved as following (2) and (4).

(2) Put $\rho = \bigvee \{x_t \in Pt(X) \mid x_t \text{ is a rg-cluster point of } \lambda \}.$

Suppose $GC_{\tau}(\lambda, r) \not\leq \rho$. Then there exists $x \in X$ and $t \in (0, 1)$ such that

(C)
$$GC_{\tau}(\lambda, r)(x) > t > \rho(x)$$
.

Since $\rho(x) < t$, then x_t is not a rg- cluster point of λ . There exists $\mu \in \mathcal{G}(x_t, r)$ with $\lambda \overline{q} \mu$. So, $\lambda \leq \overline{1} - \mu$ with r-gfo $\overline{1} - \mu$ implies $GC_{\tau}(\lambda, r)(x) \leq (\overline{1} - \mu)(x) < t$. It is a contradiction for (C). Hence $GC_{\tau}(\lambda, r) \leq \rho$.

Suppose $GC_{\tau}(\lambda, r) \not\geq \rho$. Then there exists $x \in X$ and $s \in (0, 1)$ such that

(D)
$$GC_{\tau}(\lambda, r)(y) < s < \rho(y).$$

Since $GC_{\tau}(\lambda, r)(y) < s$, by the definition of GC_{τ} , there exists r-gfc $\mu \in I^X$ with $\lambda \leq \mu$ such that

$$GC_{\tau}(\lambda, r)(y) \le \mu(y) < s < \rho(y).$$

There exists $\overline{1} - \mu \in \mathcal{G}(y_s, r)$ with $\lambda \overline{q} (\overline{1} - \mu)$. Hence y_s is not a recluster point of λ . It is a contradiction for (D). So, $GC_{\tau}(\lambda, r) \geq \rho$.

- (4) (\Rightarrow) It is trivial.
- (\Leftarrow) Let x_t be not a rg-cluster point of λ . There exists $\mu \in \mathcal{G}_{\tau}(x_t, r)$ such that $\mu \ \overline{q} \ \lambda$, that is, $\lambda \leq \overline{1} \mu$. It implies

$$GC_{\tau}(\lambda, r)(x) < (\overline{1} - \mu)(x) < t.$$

Thus, $x_t \notin GC_{\tau}(\lambda, r)$.

3. Strongly r-closed graphs and r-closed graphs

DEFINITION 3.1. Let (X, τ) and (Y, η) be fts's. Let $f: (X, \tau) \to (Y, \eta)$ be a function.

- (1) f is called fuzzy continuous if $\eta(\mu) \leq \tau(f^{-1}(\mu))$ for each $\mu \in I^Y$.
- (2) f is called generalized fuzzy continuous (for short, gf-continuous) if $f^{-1}(\mu)$ is r-gfc for $\eta(\overline{1} \mu) \geq r$.
- (3) f is called generalized fuzzy irresolute (for short, gf-irresolute) if $f^{-1}(\mu)$ is r-gfc for each r-gfc set $\mu \in I^Y$.

THEOREM 3.2. Let (X, τ) and (Y, η) be fts's satisfying the condition:

(T) $\tau_G(\overline{1} - \lambda) \ge r$ implies $GC_{\tau}(\lambda, r) = \lambda$.

Then the following statements are equivalent.

- (1) $f:(X,\tau_G)\to (Y,\eta_G)$ is fuzzy continuous.
- (2) $f(GC_{\tau}(\lambda, r)) \leq GC_{\eta}(f(\lambda), r)$, for each $\lambda \in I^X$ and $r \in I_0$. (3) $GC_{\tau}(f^{-1}(\mu), r) \leq f^{-1}(GC_{\eta}(\mu, r))$, for each $\mu \in I^Y$ and $r \in I_0$.

PROOF. (1) \Rightarrow (2). Suppose there exist $\lambda \in I^X$ and $r \in I_0$ such that

$$f(GC_{\tau}(\lambda, r)) \not\leq GC_{\eta}(f(\lambda), r).$$

Then there exist $y \in Y$ and $t \in I_0$ such that

$$f(GC_{\tau}(\lambda, r))(y) > t > GC_{\eta}(f(\lambda), r)(y).$$

If $f^{-1}(\{y\}) = \emptyset$, it is a contradiction since $f(GC_{\tau}(\lambda, r))(y) = 0$. If $f^{-1}(\{y\}) \neq \emptyset$, there exists $x \in f^{-1}(\{y\})$ such that

$$(E) f(GC_{\tau}(\lambda, r))(y) \ge GC_{\tau}(\lambda, r)(x) > t > GC_{\eta}(f(\lambda), r)(f(x)).$$

Since $GC_n(f(\lambda), r)(f(x)) < t$, by the definition of GC_n , there exists r-gfc $\mu \in I^Y$ with $f(\lambda) \leq \mu$ such that

(F)
$$GC_{\eta}(f(\lambda), r)(f(x)) \le \mu(f(x)) < t.$$

Since $\lambda < f^{-1}(\mu)$, $GC_{\tau}(f^{-1}(\mu), r) > GC_{\tau}(\lambda, r)$. By (E) and (F),

$$GC_{\tau}(f^{-1}(\mu), r)(x) \ge GC_{\tau}(\lambda, r)(x) > t > \mu(f(x)) = f^{-1}(\mu)(x).$$

By (T), $GC_{\tau}(f^{-1}(\mu), r) \neq f^{-1}(\mu)$ implies $\tau_G(\overline{1} - f^{-1}(\mu)) < r$. Moreover, $\eta_G(\overline{1} - \mu) \geq r$ because $GC_{\tau}(\mu, r) = \mu$. So, $\eta_G(\overline{1} - \mu) \geq r > \tau_G(f^{-1}(\overline{1} - \mu))$. Hence $f: (X, \tau_G) \to (Y, \eta_G)$ is not fuzzy continuous. (2) \Rightarrow (3). By (2), put $\lambda = f^{-1}(\mu)$. Since $f(f^{-1}(\mu)) \leq \mu$, then

(2)
$$\Rightarrow$$
 (3). By (2), put $\lambda = f^{-1}(\mu)$. Since $f(f^{-1}(\mu)) < \mu$, then

$$GC_{\tau}(f^{-1}(\mu), r) \le f^{-1}(f(GC_{\tau}(f^{-1}(\mu), r))) \le f^{-1}(GC_{\eta}(\mu, r)).$$

(3) \Rightarrow (1). Since $GC_n(\mu, r) = \mu$ implies $GC_{\tau}(f^{-1}(\mu), r) = f^{-1}(\mu)$, we have $\tau_G(\overline{1} - f^{-1}(\mu)) = \tau_G(f^{-1}(\overline{1} - \mu)) \ge \eta_G(\overline{1} - \mu)$ for all $\mu \in I^Y$. \square

THEOREM 3.3. Let (X,τ) and (Y,η) be fts's. If $f:(X,\tau)\to (Y,\eta)$ is gf-irresolute, then $f:(X,\tau_G)\to (Y,\eta_G)$ is fuzzy continuous.

PROOF. Suppose there exist $\mu \in I^Y$ such that $\tau_G(f^{-1}(\mu)) \not\geq \eta_G(\mu)$. Then there exists $r \in I_0$ with $GC_{\eta}(\overline{1} - \mu, r) = \overline{1} - \mu$ such that

(G)
$$\tau_G(f^{-1}(\mu)) < r \le \eta_G(\mu).$$

Since $GC_n(\overline{1} - \mu, r) = \overline{1} - \mu$ and f is gf-irresolute,

$$f^{-1}(\overline{1} - \mu) = f^{-1}(GC_{\eta}(\overline{1} - \mu, r))$$

$$= f^{-1}\left(\bigwedge\{\rho \in I^{Y} \mid \overline{1} - \mu \leq \rho, \rho \text{ is r-gfc}\}\right)$$

$$= \bigwedge\{f^{-1}(\rho) \in I^{Y} \mid \overline{1} - \mu \leq \rho, \rho \text{ is r-gfc}\}$$

$$\geq \bigwedge\{f^{-1}(\rho) \in I^{Y} \mid f^{-1}(\overline{1} - \mu) \leq f^{-1}(\rho), f^{-1}(\rho) \text{ is r-gfc}\}$$

$$\geq GC_{\tau}(\overline{1} - f^{-1}(\mu), r).$$

It implies $GC_{\tau}(\overline{1}-f^{-1}(\mu),r)=\overline{1}-f^{-1}(\mu)$ from Theorem 2.4(1). Hence $\tau_G(f^{-1}(\mu))\geq r$. It is a contradiction for (G).

Example 3.4. The converse of Theorem 3.3 is not true. Let $X = \{a, b\}$ be a set. We define fuzzy topologies $\tau, \eta: I^X \to I$ as follows:

$$\tau(\lambda) = \begin{cases} 1 & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2} & \text{if } \lambda = a_{0.8}, \quad \eta(\lambda) = \begin{cases} 1 & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2} & \text{if } \lambda = a_{0.6}, \\ 0 & \text{otherwise.} \end{cases}$$

Then an identity function $id_X:(X,\tau)\to (X,\eta)$ is not fuzzy continuous. A fuzzy point $a_{0.7}$ is a $\frac{1}{2}$ - gfc set on (X,η) but $a_{0.7}$ is not a $\frac{1}{2}$ - gfc set on (X,τ) because

$$a_{0.7} \le a_{0.8}, \tau(a_{0.8}) \ge s, 0 < s \le \frac{1}{2}, C_{\tau}(a_{0.7}, s) = \overline{1} \not\le a_{0.8}.$$

Thus, $id_X:(X,\tau)\to (X,\eta)$ is not a gf-irresolute map.

(1) For a_t with $0 < t \le 0.8$, $a_t \lor b_s$ is 1-gfc on (X, τ) . Thus,

$$GC_{\tau}(a_t, 1) = \bigwedge_{s \in I_0} (a_t \vee b_s) = a_t \vee \bigwedge_{s \in I_0} b_s = a_t.$$

(2) For $\lambda \in I^X - \{a_t \mid 0 < t \le 0.8\}$, λ is a 1-gfc set. So, $GC_{\tau}(\lambda, 1) = \lambda$. By (1) and (2), $GC_{\tau}(\lambda, r) = \lambda$ for all $\lambda \in I^X$ and $r \in I_0$. Similarly, $GC_{\eta}(\lambda, r) = \lambda$ for all $\lambda \in I^X$ and $r \in I_0$. We can obtain fuzzy topologies

$$\tau_G(\lambda) = \eta_G(\lambda) = 1, \ \forall \lambda \in I^X.$$

The identity function $id_X:(X,\tau_G)\to (X,\eta_G)$ is fuzzy continuous.

Example 3.5. We define fuzzy topologies $\tau, \eta: I^X \to I$ as follows:

$$\tau(\lambda) = \begin{cases} 1 & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2} & \text{if } \lambda = \overline{0.7}, \\ \frac{1}{2} & \text{if } \lambda = \overline{0.4}, \\ 0 & \text{otherwise,} \end{cases} \eta(\lambda) = \begin{cases} 1 & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ \frac{1}{2} & \text{if } \lambda = \overline{0.4}, \\ 0 & \text{otherwise.} \end{cases}$$

We can obtain fuzzy topologies $\tau_G, \eta_G: I^X \to I$ as follows:

$$\tau_{G}(\lambda) = \begin{cases} 1 & \text{if } \overline{0} \leq \lambda < \overline{0.3}, \\ 1 & \text{if } \overline{0.4} \leq \lambda < \overline{0.6}, \\ 1 & \text{if } \overline{0.7} \leq \lambda, \\ 0 & \text{otherwise}, \end{cases} \eta_{G}(\lambda) = \begin{cases} 1 & \text{if } \lambda = \overline{0} \text{ or } \overline{1}, \\ 1 & \text{if } \overline{0} < \lambda < \overline{0.6}, \\ 0 & \text{otherwise}. \end{cases}$$

Then an identity function $id_X:(X,\tau)\to (X,\eta)$ is fuzzy continuous. But $id_X:(X,\tau_G)\to (X,\eta_G)$ is not fuzzy continuous because

$$0 = \tau_G(\overline{0.35}) < \eta_G(\overline{0.35}) = 1.$$

DEFINITION 3.6. A fts (X, τ) is called:

- (1) r-FT₂ if for each $x_t \neq y_s$, there exist $\mu_1 \in Q_\tau(x_t, r)$ and $\mu_2 \in Q_\tau(y_s, r)$ such that $\mu_1 \wedge \mu_2 = \overline{0}$.
- (2) r- $FT_{2\frac{1}{2}}$ if for each $x_t \neq y_s$, there exist $\mu_1 \in Q_{\tau}(x_t, r)$ and $\mu_2 \in Q_{\tau}(y_s, r)$ such that $C_{\tau}(\mu_1, r) \wedge C_{\tau}(\mu_2, r) = \overline{0}$.

THEOREM 3.7. Let (A, τ_A) be a subspace of (X, τ) and $R: (X, \tau) \to (A, \tau_A)$ be a gf-continuous retraction ,that is, R(a) = a for all $a \in A$. If (X, τ) is r-FT₂, then $GC_{\tau}(\chi_A, r) = \chi_A$.

PROOF. Suppose $GC_{\tau}(\chi_A, r) \not\leq \chi_A$. Then there exist $x \in X$ and $t \in (0, 1)$ such that

$$GC_{\tau}(\chi_A, r)(x) \geq t > \chi_A(x).$$

Since $\chi_A(x) < t$, then $x \notin A$. So, $R(x) \neq x$ implies $R(x)_t \neq x_t$. Since (X, τ) is r-FT₂, there exist $\mu_1 \in Q_\tau(R(x)_t, r)$ and $\mu_2 \in Q_\tau(x_t, r)$ such that $\mu_1 \wedge \mu_2 = \overline{0}$. Since $i: (A, \tau_A) \to (X, \tau)$ is an inclusion map and

$$\left(i^{-1}(\mu_1)(R(x)) = \mu_1(R(x))\right) + t > 1,$$

then $i^{-1}(\mu_1) \in Q_{\tau_A}(R(x)_t,r)$. Since $R: X \to A$ is a gf-continuous function, $R^{-1}(i^{-1}(\mu_1))$ is r-gfo. Hence $R^{-1}(i^{-1}(\mu_1)) \in \mathcal{G}_{\tau}(x_t,r)$. Furthermore, since $\mu_2 \in \mathcal{G}_{\tau}(x_t,r)$, $\left(R^{-1}(i^{-1}(\mu_1)) \wedge \mu_2\right) \in \mathcal{G}_{\tau}(x_t,r)$. Since $GC_{\tau}(\chi_A,r)(x) \geq t$, that is, $x_t \in GC_{\tau}(\chi_A,r)$, by Theorem 2.8 (4), x_t is a rg- cluster point of χ_A . Thus,

$$\chi_A \ q \ \Big(R^{-1}(i^{-1}(\mu_1)) \wedge \mu_2 \Big).$$

So, there exists $y \in X$ such that

$$\chi_A(y) + (R^{-1}(i^{-1}(\mu_1)) \wedge \mu_2)(y) > 1.$$

It implies $y \in A$ and R(y) = y because R is a retraction. Hence

$$\left(R^{-1}(i^{-1}(\mu_1)) \wedge \mu_2\right)(y) = \mu_1(R(y)) \wedge \mu_2(y) = \mu_1(y) \wedge \mu_2(y) > 0.$$

It is a contradiction from $\mu_1 \wedge \mu_2 = \overline{0}$. Thus, $GC_{\tau}(\chi_A, r) = \chi_A$.

THEOREM 3.8. Let (X,τ) and (Y,η) be fts's. Let $f: X \to Y$ be a gf-continuous function which (Y,η) is r-FT₂ and $C_{\tau\otimes\eta}(\mu,r) = \mu$ for $\mu\in I^{X\times Y}$. Then $GC_{\tau}(\pi_1(\mu\wedge\chi_{G(f)}),r)=\pi_1(\mu\wedge\chi_{G(f)})$, where $G(f)=\{(x,f(x))\mid x\in X\}$ and π_1 is the projection of $X\times Y$ onto X.

Proof. Suppose

$$GC_{\tau}(\pi_1(\mu \wedge \chi_{G(f)}), r) \not\leq \pi_1(\mu \wedge \chi_{G(f)}).$$

Then there exist $x \in X$ and $t \in (0,1)$ such that

(G)
$$GC_{\tau}(\pi_1(\mu \wedge \chi_{G(f)}), r)(x) \ge t > \pi_1(\mu \wedge \chi_{G(f)})(x).$$

Let $\lambda \in Q_{\tau}(x_t, r)$ and $\rho \in Q_{\eta}(f(x)_t, r)$ such that $\left(\pi_1^{-1}(\lambda) \wedge \pi_2^{-1}(\rho)\right) \in Q_{\tau \otimes \eta}((x, f(x))_t, r)$. Since $f: X \to Y$ is gf-continuous, then $f^{-1}(\rho) \in \mathcal{G}_{\tau}(x_t, r)$. So, $(\lambda \wedge f^{-1}(\rho)) \in \mathcal{G}_{\tau}(x_t, r)$. Since $x_t \in GC_{\tau}(\pi_1(\mu \wedge \chi_{G(f)}), r)$, we have

$$(\lambda \wedge f^{-1}(\rho)) \ q \ \pi_1(\mu \wedge \chi_{G(f)}).$$

So, there exists $z \in X$ such that

$$(\lambda \wedge f^{-1}(\rho))(z) + \pi_1(\mu \wedge \chi_{G(f)})(z) > 1.$$

Since $\pi_1(\mu \wedge \chi_{G(f)})(z) > 0$, we have

$$(\lambda \wedge f^{-1}(\rho))(z) + \mu(z, f(z)) > 1.$$

It implies

$$\left(\pi_1^{-1}(\lambda) \wedge \pi_2^{-1}(\rho)\right)(z, f(z)) + \mu(z, f(z)) > 1.$$

Thus,

$$\left(\pi_1^{-1}(\lambda) \wedge \pi_2^{-1}(\rho)\right) q \mu.$$

Moreover, $\left(\pi_1^{-1}(\lambda) \wedge \pi_2^{-1}(\rho)\right) \in Q_{\tau \otimes \eta}((x, f(x))_t, r)$. Hence

$$(x, f(x))_t \in C_{\tau \otimes \eta}(\mu, r) = \mu, \quad (x, f(x))_t \in \chi_{G(f)}.$$

It implies $x_t \in \pi_1(\mu \wedge \chi_{G(f)})$. It is a contradiction for (G).

THEOREM 3.9. Let (X,τ) and (Y,η) be fts's. If $f:X\to Y$ has a r-closed graph, that is, $C_{\tau\otimes\eta}(\chi_{G(f)},r)=\chi_{G(f)}$ and $g:X\to Y$ be a gf-continuous, then $GC_{\tau}(\chi_A,r)=\chi_A$ where $A=\{x\in X\mid f(x)=g(x)\}$.

PROOF. Since $\chi_A = \pi_1(\chi_{G(f)} \wedge \chi_{G(g)})$ and $C_{\tau \otimes \eta}(\chi_{G(f)}, r) = \chi_{G(f)}$, by Theorem 3.8, we have $GC_{\tau}(\chi_A, r) = \chi_A$.

THEOREM 3.10. Let (X,τ) and (Y,η) be fts's. Let $f:X\to Y$ be a fuzzy continuous function which (Y,τ) is r-FT₂. Then:

- (1) $C_{\tau \otimes \eta}(\chi_{G(f)}, r) = \chi_{G(f)}$ where $G(f) = \{(x, f(x)) \mid x \in X\}$.
- (2) If $g: X \to Y$ is a gf-continuous function, then $GC_{\tau}(\chi_A, r) = \chi_A$ where $A = \{x \in X \mid f(x) = g(x)\}.$

PROOF. (1) Suppose $C_{\tau \otimes \eta}(\chi_{G(f)}, r) \not\leq \chi_{G(f)}$. Then there exist $(x, y) \in X \times Y$ and $t \in (0, 1)$ such that

$$C_{\tau \otimes \eta}(\chi_{G(f)}, r)(x, y) \ge t > \chi_{G(f)}(x, y).$$

Since $\chi_{G(f)}(x,y) < t$, $(x,y) \notin G(f)$, that is, $f(x) \neq y$. Since (Y,τ) is r- FT_2 , for $f(x)_t \neq y_t$, there exist $\lambda \in Q_\eta(y_t,r)$ and $\rho \in Q_\eta(f(x)_t,r)$ such that $\lambda \wedge \mu = \overline{0}$. Since f is fuzzy continuous, then $f^{-1}(\rho) \in Q_\tau(x_t,r)$.

On the other hand, since $(x,y)_t \in C_{\tau \otimes \eta}(\chi_{G(f)},r)$, then $(x,y)_t$ is r-cluster point of $\chi_{G(f)}$. For $\pi_1^{-1}(f^{-1}(\rho)) \wedge \pi_2^{-1}(\lambda) \in Q_{\tau \otimes \eta}((x,y)_t,r)$, we have

$$\left(\pi_1^{-1}(f^{-1}(\rho)) \wedge \pi_2^{-1}(\lambda)\right) q \chi_{G(f)}.$$

There exists $(a, b) \in X \times Y$ such that

$$\left(\pi_1^{-1}(f^{-1}(\rho)) \wedge \pi_2^{-1}(\lambda)\right)(a,b) + \chi_{G(f)}(a,b) > 1.$$

Since $\chi_{G(f)}(a,b) = 1$, then b = f(a). So,

$$\Big(\pi_1^{-1}(f^{-1}(\rho)) \wedge \pi_2^{-1}(\lambda)\Big)(a,b) = \rho(f(a)) \wedge \lambda(f(a)) \neq \overline{0}.$$

It is a contradiction for $\lambda \wedge \mu = \overline{0}$.

(2) It is easily proved from (1) and Theorem 3.9.

LEMMA 3.11. Let (X, τ) and (Y, η) be fts's. Let $f: X \to Y$ be a function. For $\mu \in I^X$ and $\rho \in I^Y$, we have the following properties:

- (1) $\left(\pi_1^{-1}(\mu) \wedge \pi_2^{-1}(\rho)\right) \overline{q} \chi_{G(f)}$ if and only if $f(\mu) \wedge \rho = \overline{0}$.
- (2) $C_{\tau \otimes \eta}(\chi_{G(f)}, r) = \chi_{G(f)}$ if and only if for each $x_t \in Pt(X), y_s \in Pt(Y)$ with $f(x) \neq y$, there exist $\mu \in Q_{\tau}(x_t, r)$ and $\rho \in Q_{\eta}(y_s, r)$ such that $f(\mu) \wedge \rho = \overline{0}$.

PROOF. (1) (\Rightarrow) Let $f(\mu) \land \rho \neq \overline{0}$. There exists $y \in Y$ such that $f(\mu)(y) \land \rho(y) > 0$. By the definition of $f(\mu)$, there exists $x \in f^{-1}(\{y\})$ such that

$$f(\mu)(y) \wedge \rho(y) \geq \mu(x) \wedge \rho(f(x)) > 0.$$

It implies

$$\left(\pi_1^{-1}(\mu) \wedge \pi_2^{-1}(\rho)\right)(x, f(x)) + \chi_{G(f)}(x, f(x)) > 1.$$

Thus, $\left(\pi_1^{-1}(\mu) \wedge \pi_2^{-1}(\rho)\right) q \chi_{G(f)}$.

 (\Leftarrow) Let $\left(\pi_1^{-1}(\mu) \wedge \pi_2^{-1}(\rho)\right) q \chi_{G(f)}$. Then there exists $(x,y) \in X \times Y$ such that

$$\left(\pi_1^{-1}(\mu) \wedge \pi_2^{-1}(\rho)\right)(x,y) + \chi_{G(f)}(x,y) > 1.$$

Thus, y=f(x) with $\mu(x)\wedge\rho(f(x))>0$. It implies $f(\mu)(f(x))\wedge\rho(f(x))>0$. Thus, $f(\mu)\wedge\rho\neq\overline{0}$.

(2) (\Rightarrow) Let $x_t \in Pt(X), y_s \in Pt(Y)$ with $f(x) \neq y$. Put $p = t \wedge s$. Since $(x, y)_p \notin \chi_{G(f)} = C_{\tau \otimes \eta}(\chi_{G(f)}, r)$, by Theorem 2.8 (3), $(x, y)_p$ is not r-cluster point of $\chi_{G(f)}$. So, there exist $\mu \in Q_{\tau}(x_p, r)$ and $\rho \in Q_{\eta}(y_p, r)$ with $\left(\pi_1^{-1}(\mu) \wedge \pi_2^{-1}(\rho)\right) \in Q_{\tau \otimes \eta}((x, y)_t, r)$ such that

$$\left(\pi_1^{-1}(\mu) \wedge \pi_2^{-1}(\rho)\right) \overline{q} \chi_{G(f)}.$$

By (1), it implies $f(\mu) \wedge \rho = \overline{0}$. Furthermore, $\mu \in Q_{\tau}(x_p, r)$ and $\rho \in Q_{\eta}(y_p, r)$ imply $\mu \in Q_{\tau}(x_t, r)$ and $\rho \in Q_{\eta}(y_s, r)$.

 (\Leftarrow) Suppose $C_{\tau \otimes \eta}(\chi_{G(f)}, r) \not\leq \chi_{G(f)}$. Then there exist $(x, y) \in X \times Y$ and $t \in (0, 1)$ such that

$$(H) C_{\tau \otimes \eta}(\chi_{G(f)}, r)(x, y) \ge t > \chi_{G(f)}(x, y).$$

Since $\chi_{G(f)}(x,y) < t$, then $(x,y) \notin G(f)$, that is, $f(x)_t \neq y_t$. There exist $\mu \in Q_\tau(x_t,r)$ and $\rho \in Q_\eta(y_t,r)$ such that $f(\mu) \wedge \rho = \overline{0}$. By (1),

$$\left(\pi_1^{-1}(\mu) \wedge \pi_2^{-1}(\rho)\right) \overline{q} \chi_{G(f)}.$$

Hence $(x,y)_t$ is not a r-cluster point of $\chi_{G(f)}$. By Theorem 2.8 (3), $C_{\tau \otimes \eta}(\chi_{G(f)}, r)(x, y) < t$. It is a contradiction for (H). Hence we have $C_{\tau \otimes \eta}(\chi_{G(f)}, r) = \chi_{G(f)}$.

THEOREM 3.12. Let (X, τ) and (Y, η) be fts's. Let $f: X \to Y$ be a fuzzy continuous injective function with $C_{\tau \otimes \eta}(\chi_{G(f)}, r) = \chi_{G(f)}$. Then (X, τ) is r-FT₂.

PROOF. (1) (\Rightarrow) Let $a, b \in X$ with $a \neq b$. Then $f(a) \neq f(b)$. So, $\chi_{G(f)}(a, f(b)) = 0$. Since $(a, f(b))_t \notin \chi_{G(f)} = C_{\tau \otimes \eta}(\chi_{G(f)}, r)$, then $(a, f(b))_t$ is not r-cluster point of $\chi_{G(f)}$. Then there exist $\mu \in Q_{\tau}(a_t, r)$ and $\rho \in Q_{\eta}(f(b)_t, r)$ with $\left(\pi_1^{-1}(\mu) \wedge \pi_2^{-1}(\rho)\right) \in Q_{\tau \otimes \eta}((a, f(b))_t, r)$ such that

$$\left(\pi_1^{-1}(\mu) \wedge \pi_2^{-1}(\rho)\right) \overline{q} \chi_{G(f)}.$$

By Lemma 3.11(1), $f(\mu) \wedge \rho = \overline{0}$. Since f is fuzzy continuous, $f^{-1}(\rho) \in Q_{\tau}(b_t, r)$ such that $f(\mu) \wedge f(f^{-1}(\rho)) = \overline{0}$. It implies $f(\mu \wedge f^{-1}(\rho)) = \overline{0}$ because f is injective. Therefore $\mu \wedge f^{-1}(\rho) = \overline{0}$.

DEFINITION 3.13. Let (X, τ) and (Y, η) be fts's. A function $f: X \to Y$ has a strongly r-closed graph if for each $\chi_{G(f)}(x, y) = 0$, there exist $\mu \in Q_{\tau}(x_t, r)$ and $\rho \in Q_{\eta}(y_s, r)$ such that $\left(\pi_1^{-1}(\mu) \wedge \pi_2^{-1}(GC_{\eta}(\rho, r))\right) \wedge \chi_{G(f)} = \overline{0}$.

The following corollaries is easily proved from Lemma 3.11.

COROLLARY 3.14. Let (X, τ) and (Y, η) be fts's. A function $f: X \to Y$ has a strongly r-closed graph if for each $\chi_{G(f)}(x, y) = 0$, there exist $\mu \in Q_{\tau}(x_t, r)$ and $\rho \in Q_{\eta}(y_s, r)$ such that $f(\mu) \wedge GC_{\eta}(\rho, r) = \overline{0}$.

COROLLARY 3.15. Let (X, τ) and (Y, η) be fts's. If $f: X \to Y$ has a strongly r-closed graph, then $C_{\tau \otimes \eta}(\chi_{G(f)}, r) = \chi_{G(f)}$, that is, f has a r-closed graph.

THEOREM 3.16. Let (X, τ) and (Y, η) be fts's. Let $f: X \to Y$ be fuzzy continuous which (Y, η) is $r\text{-}FT_{2\frac{1}{2}}$. Then f has a strongly r-closed graph.

PROOF. Since $\chi_{G(f)}(x,y)=0$, $(x,y)\not\in G(f)$, that is, $f(x)\neq y$. Since (Y,τ) is $\operatorname{r-}FT_{2\frac{1}{2}}$, for $f(x)_t\neq y_s$, there exist $\lambda\in Q_\eta(y_s,r)$ and $\rho\in Q_\eta(f(x)_t,r)$ such that $C_\eta(\lambda,r)\wedge C_\tau(\rho,r)=\overline{0}$. Since $f:X\to Y$ is fuzzy continuous, $f^{-1}(\rho)\in Q_\tau(x_t,r)$ such that

$$f(f^{-1}(\rho)) \le \rho \le C_{\tau}(\rho, r).$$

It implies $f(f^{-1}(\rho)) \wedge C_{\eta}(\lambda, r) = \overline{0}$. Since $GC_{\eta}(\lambda, r) \leq C_{\eta}(\lambda, r)$, we have $f(f^{-1}(\rho)) \wedge GC_{\eta}(\lambda, r) = \overline{0}$. Hence f has a strongly r-closed graph. \square

References

- [1] G. Balasubramanian and P. Sundaram, On some generalizations of fuzzy continuous functions, Fuzzy Sets and Systems 86 (1997), 93-100.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182–190.
- [3] K. C. Chattopadhyay and S. K. Samanta, Fuzzy topology, Fuzzy Sets and Systems 54 (1993), 207–212.
- [4] K. C. Chattopadhyay, R. N. Hazra and S. K. Samanta, *Gradation of openness: Fuzzy topology*, Fuzzy Sets and Systems **49** (1992), no. 2, 237–242.
- [5] M. C. Cueva, On g-closed sets and g-continuous mappings, Kyungpook Math. J. 32 (1993), 205-209.
- [6] W. Dunham, A new closure operator for non-T₁ topologies, Kyungpook Math. J. 22 (1982), 55-60.
- [7] R. N. Hazra, S. K. Samanta and K. C. Chattopadhyay, Fuzzy topology redefined, Fuzzy Sets and Systems 45 (1992), 79–82.
- [8] U. Höhle and S. E. Rodabaugh, Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, The handbooks of fuzzy sets series, Vol. 3, Kluwer Academic Publishers, Boston, 1999.
- [9] Y. C. Kim, Initial smooth fuzzy topological spaces, J. of Korea Fuzzy Logic and Intelligent Systems 8 (1998), no. 3, 88-94.
- [10] _____, Initial L-fuzzy closure spaces, (in press) Fuzzy Sets and Systems.
- [11] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19 (1970), 89-96.
- [12] A. S. Mashhour, A. A. Allam, F. S. Mahmoud and F. H. Khedr, On supratopological spaces, Indian J. Pure appl. Math. 14 (1983), no. 4, 502-510.

[13] A. P. Šostak, On a fuzzy topological structure, Rend. Circ. Matem. Palermo Ser.II 11 (1985), 89–103.

Department of Mathematics Kangnung National University Gangwondo 210-702, Korea *E-mail*: yck@kangnung.ac.kr jmko@kangnung.ac.kr