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ON HYPERSURFACES OF MANIFOLDS EQUIPPED
WITH A HYPERCOSYMPLECTIC 3-STRUCTURE

YEONG-M0OO SONG, JEONG-SIK KiM AND MUKUT MANI TRIPATHI

ABSTRACT. Hypersurfaces of a Riemannian manifold equipped with
a hypercosymplectic 3-structure are studied. Integrability condi-
tions for certain distributions on the hypersurface are investigated.
Geometry of leaves of certain distribution are also studied.

1. Introduction

The quaternionic analog of almost complex structures is the almost
quaternion (hypercomplex) which is defined by three local (global) al-
most complex structures which satisfy the quaternionic relations as the
imaginary quaternions satisfy ([3]). Quaternion Kéahler manifolds and
hyper-Kéahler manifolds are special and interesting cases of Riemannian
manifolds with almost quaternion and almost hypercomplex structure,
respectively. Quaternion Kéhler manifolds are Einstein, while hyper-
Kahler manifolds are Ricci flat.

An almost contact 3-structure was defined by Kuo ([5]) and it is
closely related to both almost quaternion and almost hypercomplex
structures. Hypersurfaces of manifolds with almost hypercomplex struc-
ture inherit naturally three almost contact structures which constitute
an almost contact 3-structure. An almost contact metric 3-structure
manifold is always (4m + 3)-dimensional. The structural group of the
tangent bundle of a (4m + 3)-dimensional manifold equipped with an
almost contact 3-structure is reducible to Sp (m) x Is.

In particular, if each almost contact metric structure of an almost
contact metric 3-structure is Sasakian, then this structure is called a
Sasakian 3-structure. Riemannian manifolds with Sasakian 3-structure
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are called 3-Sasakian manifolds. A (4m + 3)-dimensional sphere is a
3-Sasakian manifold, while on a (4m + 3)-dimensional torus one gets
an almost contact metric 3-structure, where each almost contact metric
structure is cosymplectic ([2]). F. Martin Cabrera calls such a structure
as a hypercosymplectic 3-structure ([6]).

Hypersurfaces of manifolds equipped with Sasakian 3-structures are
studied by A. Bejancu in [1]. Thus motivated sufficiently, in this paper
we study hypersurfaces of a manifold equipped with a hypercosymplec-
tic 3-structure. The paper is organized as follows. Section 2 contains
preliminaries. In section 3, some basic results are given. Integrability
conditions for certain natural distributions on the hypersurface are in-
vestigated in section 4. In the last section, geometry of leaves of certain
distribution are studied.

2. Hypercosymplectic 3-structures

Let M be a (4m+3)-dimensional manifold. Let M admit three almost
contact structures (¢dq,&q, M), @ = 1,2, 3, that is,

(1) ¢g =—I+1.0®%, 1nu(&)=1 ¢u(la)=0, nao¢s=0.
Let these three almost contact structures satisfy

(2) Pao Py — M @& =~ 0 Pa+ M ®E = Pe,
(3) Bab = —Pp€a = &o,

(4) Na© P = —1p 0 P = N,

(5) 1a(6p) = m(a) =0, a#b

for every cyclic permutation (a,b,c) of (1,2,3). Then we say that M
is endowed with an almost contact 3-structure (Kuo, [5]). If M is a
Riemannian manifold, then there is always a Riemannian metric g on
M such that

(6) (X, 0.Y) = g(X,Y) = n(X)na(Y), a=1,2,3

(7) 9(X, &) =77a(X), a=1,2,3

for all X,Y € TM. Then we say that M is endowed with an almost
contact metric 3-structure (¢q, s, 74, 9) (Kuo, [5]). From (5) and (7) it
follows that &1, &2, £3 are mutually orthogonal. We also have

(8) Qa(X,Y) = Q(X,¢aY) = _g(¢aX>Y)a a=12,3.
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We know that an almost contact metric structure (¢, £, 7, g) is called
a cosymplectic structure if (Blair, [2])

(9) Ve =0,
where V is Riemannian connection. From (9) it follows that
(10) VE=0, Vn=0.

If all the three almost contact metric structures (dq,&a,7q,9), @ = 1,2, 3,
are cosymplectic structures, that is,

(11) @(ba = 07

(12) Vé, =0 Vn, =0,
then the manifold M is said to have a hypercosymplectic 3-structure
(¢a,€a,Ma,9), @ = 1,2,3 (cf. Martin Cabrera, [6]).

EXAMPLE 1. We construct a simple example of a hypercosymplec-
tic 3-structure in the 3-dimensional Euclidean space R3. We define
(Bas€asMar 9), @ =1,2,3 in R3 by their matrices as follows:

0 01 0 0 O 0 1 0
o1 = 0 00|, ¢o=100 =11}, &3=1|—-10 0],
-1 0 0 01 O 0O 0 0
0 1 0
51: 1 ) 52— 0 y 53_ 0 s
0 0 1
m=[01 0], m=[100], n3=[0 0 1],

and

g=1Is.
By direct computations, we find that the above set provides a hyper-
cosymplectic 3-structure on R3.

EXAMPLE 2. We consider a (4m -+ 3)-dimensional torus T*™*3 (m >
1) and let {a1, asg, - -+ , um3} be a basis for 1-forms such that each a; is
integral and closed. “a; is integral and closed” means that a; defines an
element of the first integral cohomology group. That is, if one integrates
a; along any l-cycle, then the result is an integral number. On T4m+3
we consider the metric tensor field given by
4m+3

g(X, V)= > ai(X)au(Y)
i=1
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and the almost contact metric 3-structure consisting of the three (1,1)
tensor fields

4m+3
ba = Z (eam+i ® & — €; ® Qati + €em+i ® Qbm+i
i=1
—€bm+ti @ Xem+i T €am+c ® Camid — €am1b & a4m+c) )
where {e},€2, - , €4m+3} is the orthonormal frame field dual of {a;, ag,

-, Q4m+3} and (a,b,c) is a cyclic permutation of (1,2,3); the three
1-forms
M = O4m+1, 72 = C4m+42, 73 = C4m+3;
and the three vector fields

&1 = eam+1, &2 =eamt2, &3 = eamy3.

Then the torus T#™*3 contains a hypercosymplectic 3-structure (¢g, &,,
Ta> 9) [6].

3. Some basic results

Let M be a hypersurface of M equipped with an almost contact met-
ric 3-structure (¢q,&q, %, 9), @ = 1,2,3, such that the structure vector
fields &,, a = 1, 2,3 are tangential to M. Let N be the unit normal to
M. Since,

(13) g(¢aN7N)=07 a=1,273a
therefore denoting
(14) X, = ¢uN, a=1,2,3

we can define three 1-dimensional distributions D,, a = 1,2, 3 spanned
by Xg, a =1,2,3, respectively:

Dy : & — Doz = o(TEM) C ToM,  a=1,2,3.
We denote by
E={a} @ {&) @ {6} and D+ =D& D;® Ds,

where {£,}, a = 1,2,3 are the 1-dimensional distributions spanned by
structure vector fields &, on M. In view of (14) we have

(15) $aXa = —N, a=1,23,

(16) $aXp = Xc = —p X,
for any cyclic permutation (a, b, c) of (1,2, 3).
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THEOREM 1. Let M be a hypersurface of M equipped with an al-
most contact metric 3-structure (¢q,&q,Ma,9), @ = 1,2, 3, such that the
structure vector fields &,, a = 1,2, 3 are tangential to M. Then
(a) Dy, Dy, D3 are mutually orthogonal,

(b) D+ is orthogonal to E.
Consequently, D1, Ds, D3, {£1}, {&2}, {€3} are mutually orthogonal.

ProoF. (a) Let Y, € D,,Y, € Dy. By definition of D, and D,
there exist differentiable functions f,, fp such that Yy = f,é.N and
Yy, = fodpN. Then by using (8), (2), (7), (13) we get

g(YaaYb) = fafbg(¢aN> ¢bN) = “fafbg(Na ¢a¢bN)
= —fafog(N,¢cN + mp(N)&a) = 0.

Thus D, is orthogonal to Dy for each cyclic permutation.{a,b,c) of

(1,2,3).
(b) For Y, € D,, a = 1,2,3, we get g(Y,,&) = fag(daN,&) =
—fa9(N, 9a€) = 0, which completes the proof. O

Now, we denote by D the orthogonal complementary distribution to
DL€ in M.

THEOREM 2. If M is a hypersurface of M equipped with an almost
contact metric 3-structure (¢q,€4,M4,9), @ = 1,2, 3, such that the struc-
ture vector fields €., a = 1, 2, 3 are tangential to M, then the distribution
D is invariant by each ¢,.

PROOF. Let X € D,Y € DL, Using (8), we get
9(9X,Y) = —g(X,¢.Y) = 0,

which implies that ¢,D L D+. Next, we get
9(¢aX,N) = —g(X, o N) =0,
which implies that ¢,D L T1-M. Finally, we have
9(0aX, &) = —9(X, $a&p) = 0,

which shows that ¢,D L €. Hence ¢,D = D, that is, D is invariant by
each @,. ]

Denoting by U the projection operator of TM on to the invariant
distribution D, an arbitrary vector field X on M can be written as

3
(17) X=UX+ Z (na(X)ga + wa(X)Xa) ,

a=1
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where wg, @ = 1,2,3 are 1-forms locally defined on M by
(18) wa(X) = g(X, Xa), a=1,23.
Operating by ¢, to (17) and taking account of (15), (16), (1) and (3)
we obtain
(19) @aX = GaU X+ (X)Ec—11c(X)Ept00p(X) Xe—we(X) Xp—wa (X)N.
Now, we write the Gauss and Weingarten formulae as
(20) VxY =VxY +h(X,Y)N,

(21) VxN = —AX,

for all XY € TM, where V is the induced Riemannian connection on
M, h is the second fundamental form of the immersion and A is the
fundamental tensor of Weingarten with respect to the unit normal N.
It is well known that

(22) h(X,Y) = g(AX,Y).

If each almost contact metric structure (¢q,&q,7q,9), @ = 1,2,3 is a
cosymplectic structure, then we have

0 = (vX()ba)Y
= Vx(3UY +m(Y ) — 1o(Y)&b + wp(¥) X — we(Y) Xp
— wa(Y)N) — ¢ (VxY + h(X,Y)N)
= (Vx (¢aUY + (V) — ne(Y)Ep + wp(Y) X — we(Y) Xp)
+ wa(Y)(AX) = 9UVxY —mp(VxY)ée +n:(VxY )&
— wp(VxY) X, +we(VxY)Xp — H{(X,Y)X,)
+ (h (X, 0 UY + (Y€ — Ne(Y )& + wp(Y) X, — we(Y)Xp) N
- ((VXWa)Y)N) .
Therefore, equating normal parts of both the sides we get
(23) 0 = A(X,8.UY) +m(Y)R(X, &) = ne(Y)R(X, &)
+ wp(Y)h(X, Xc) — we(Y)h(X, Xp) — (Vxwa)Y.

4. Integrability of certain distributions

LEMMA 3. Let M be a hypersurface of M equipped with a hyper-
cosymplectic 3-structure (¢q,&q,Ma,9), @ = 1,2, 3, such that the struc-
ture vector fields &,, a = 1,2, 3 are tangential to M. Then we have

(24) Vx& =0, X eTM,
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(25) hX,6)=0, XeTM.

PROOF. In view of (12) and (20), for all X € TM we get

(26) Vixéa + X, &)N = Vxé, = 0.
Equating tangential and normal parts in (26) we get (24) and (25) re-
spectively. O

LEMMA 4. Let M be a hypersurface of M equipped with a hyper-
cosymplectic 3-structure (¢q,&4,Mq,9), & = 1,2,3, such that the struc-
ture vector fields &,, a = 1,2,3 are tangential to M. Then for each
X €D andY € DL, we have

(27) g([X,&],Y)=0, a=123.

PrOOF. Using (12) for all X € D and Y € D+, we get
9([X.&],Y) =9 (Vxa = Ve, X,Y) = =g (Ve,X,Y) = g (X, V,Y).
Putting Y = X,, X = ¢ Z, for some Z € D, in the above equation we
get
9 (02, Ve, Xp) = 9(Z, Ve Xp) = 9(Z, (Ve b5) Xo — Ve, ¢pXs)
= g (Z, _@ga‘lszb) - g (Z, VgaN) =g (Z, —Afa)
—h (Za fa) =0.
Hence we get (27) . d
LEMMA 5. Let M be a hypersurface of M equipped with a hyper-
cosymplectic 3-structure (¢q,&q,7Ma,9), @ = 1,2,3, such that the struc-

ture vector fields &,, a = 1,2,3 are tangential to M. Then for each
X €D andY € DL, we have

(28) 9([Y,&], X) =0.

PROOF. Using (12) for all X € D and Y € D+, we get
9([V,6], X) = g (Vy&a — Ve, Y, X) = =g (Ve,Y, X) = g (X, Ve, Y).
Then as in Lemma 4, we get the result. O

THEOREM 6. Let M be a hypersurface of M equipped with a hyper-
cosymplectic 3-structure (¢q,£4,Ma,9), a = 1,2,3, such that the struc-
ture vector fields &,, a = 1,2, 3 are tangential to M. Then the distribu-
tion & is integrable.
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PrROOF. We have
[a: &) = Ve, & — Ve e =0-0=0€¢,
which implies the proof. O

THEOREM 7. Let M be a hypersurface of M equipped with a hyper-
cosymplectic 3-structure (¢q,&a,Ma,9), @ = 1,2,3, such that the struc-
ture vector fields &,, a = 1,2, 3 are tangential to M. Then the distribu-
tion D ® D™ is integrable.

PROOF. Let X,Y € D@ D'. Then in view of (24), we have

g([X7Y]>£a) = g(vavaga)—g(vaaga)
= -9 (Y7 vaa) + g (X7 Vyga) = 07

from where it follows that [X,Y] € D& D+, O

Unlike in the case of Sasakian 3-structure, where D and D+ are not
integrable, in view of Theorem 7, we can state the following two corol-
laries.

COROLLARY 8. Let M be a hypersurface of M equipped with a
hypercosymplectic 3-structure (¢q,€4,M4,9), @ = 1,2,3, such that the
structure vector fields &,, a = 1,2,3 are tangential to M. Then the
distribution D is integrable if and only if

g([X,Y],Z) =0, X,YeD, ZeDt

COROLLARY 9. Let M be a hypersurface of M equipped with a
hypercosymplectic 3-structure (¢q,€q,%a,9), @ = 1,2,3, such that the
structure vector fields €;, a = 1,2,3 are tangential to M. Then the
distribution D+ is integrable if and only if

g([X>Y],Z)=Oa X,YEIDJ',ZED.

THEOREM 10. Let M be a hypersurface of M equipped with a hyper-
cosymplectic 3-structure (¢q,€4,Ma,9), @ = 1,2,3, such that the struc-
ture vector fields &,, a = 1,2, 3 are tangential to M. Then the following
statements are equivalent:

(a) the hypersurface M is D-geodesic.
(b) the distribution D @ E is integrable.
(c) the second fundamental form h of the immersion of M satisfies

(29)  A(X,0.Y) =h(d.X,Y), a=1,23, X, YeD.
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Proor. First we prove (a) = (b). Let the hypersurface M be D-
geodesic, that is,

(30) MX,Y)=0, X, YeD.

In view of Lemma 4 and Theorem 6, to prove the integrability of D ® F
it is sufficient to prove that [X,Y] € DO E for all X,Y € D. Since
wa (X) and 71, (X) are zero for all X € D, using (30) in (23), we have

0=~(Vxw,)Y or we (VxY)=0.
Therefore, we get
g([X,Y],X,) =we ([X,Y]) =we (VxY) —w, (VyX) =0, a=1,2,3.

Hence [X,Y] € D& F for all X,Y € D. Thus we have (a) = (b).
Next, we prove (b) = (¢). Assume that the distribution D& E is
integrable. Then for all X, Y € D we get

0=g([X,Y],Xs) =wa (VxY) —wa (Vy X).
Therefore, in view of (23) we get
hMX,0.Y) = —we (VxY) = —w, (Vy X) = h(Y, ¢, X), a=1,223.
In last, we prove that (c¢) = (a). Assuming (c) we have for all X, Y € D:
hosX,Y) = h(X,¢3Y) = h(X,(d10¢2)Y)
= h((¢2001)X,Y) = —h(¢3X,Y).

Thus h(¢3X,Y) = 0, which implies that the hypersurface M is D-
geodesic because ¢3 is an automorphism on D. O

THEOREM 11. Let M be a hypersurface of M equipped with a hyper-
cosymplectic 3-structure (¢q,€4,74,9), @ = 1,2,3, such that the struc-
ture vector fields &,, a = 1,2, 3 are tangential to M. Then the following
statements are equivalent:

(a) the distribution DY@®FE is integrable.
(b) the hypersurface M is (D, D*)-geodesic, that is,

(31) h(X,Y)=0, XecDY D

Proor. For all X,Y € D, we have
g([X1,X9],83X) = g(Vx, Xo— Vx, X1,83X)
= g(Vx, ¢3X1+ Vx, ¢3X2, ¢3X)
=g (¢3 Vx, X1+ ¢3 Vx, X2,¢3X)
= g(Vx, X1, X) +9(Vx, X2, X).
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Similarly, we obtain

g ([X27X3] 7¢1X) =g (szXQ’X) +g (VX3X3’X)
and

9([X3, X1],42X) = g (V3 X3, X) + 9 (Vx, X1, X) .
By Lemma 5 and Theorem 7, the distribution DL @ FE is integrable if and
only if
(32) 9(Vx,Xe, X)=0, XeD.
Now, we get

9(Vx,Xo, X) = g(¢a vXa Xo, 0o X) = _g(ﬁ){a N, ¢o X)

(33) = g(AXq, ¢ X) = (Xa, $a X).
Thus from (32) and (33) the two statements are equivalent. O

5. Geometry of leaves

In this section we find minimum sufficient condition for leaves of
distribution D @ E (resp. D1®E) to be totally geodesic immersed in
M (resp. M).

THEOREM 12. Let M be a hypersurface of M equipped with a hyper-
cosymplectic 3-structure (@g,€4,Ma,9), @ = 1,2,3, such that the struc-
ture vector fields &,, a = 1,2, 3 are tangential to M. If the distribution
D & FE is integrable then each leaf of D @ F is totally geodesic immersed

in M.

PROOF. Let M’ be a leaf of D @& E. We denote by h’ the second fun-
damental form of the immersion of M’ in M and by V' the Riemannian
connection induced by ¥V on M’. Then we get

(34) VxY =Vy5Y + K (X,Y), X, Y eTM'.
Since D @ E is invariant by each ¢,,a = 1,2, 3, from (34) taking account
of (11), we obtain
R(X,0.Y) = Vx@aY —VideY = ¢, VxY — VoY
(35) = ¢.V%Y + ¢/ (X,Y) — Y.
Taking normal parts to TM' in (35), we get
W(X,$sY) = ¢ah(X,Y) = (¢p0 ¢ )W (X,Y) = ¢ph'(X, $cY)
= h,(¢bX7 ¢CY) = h’/((¢c © ¢b)X7 Y) = _hl(¢aXa Y)
= —h(X,d.Y).
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Hence we get

(36) K(X,6.Y)=0, X, YeD®E.

Since ¢, is an automorphism of DH{&}@{¢.} from (36) it follows that
(37) h(X,Z) =0, X eDOE, ZcDp{&}®{é}-

Next, (36) is valid if we replace ¢, by ¢, ¢.. Thus we get

(38) R (X, &) = K(X, ¢pt.) = 0, XeDaFE.

By (37) and (38) it follows that M’ is totally geodesic immersed in
M. 4

THEOREM 13. Let M be a hypersurface of M equipped with a hyper-
cosymplectic 3-structure (¢q,&q,M4,9), @ = 1,2,3, such that the struc-
ture vector fields &q, a = 1,2,3 are tangential to M. If the distribution
DLQE is integrable then each leaf of DY@®E is totally geodesic immersed
in M.

PROOF. Let M* be a leaf of DL @ E. We denote by h* the second
fundamental form of the immersion of M* in M. By using (8), (11) and
Gauss and Weingarten formulae we get for X € DY®E, Z € D we have

9(VxX1,2) = g(VxX1,Z)=g(Vx$1N,Z) =g (¢1VxN,Z)
= —g(VxN,:Z) =g(AX, 1 Z) = h(X,$:2),
which, in view of Theorem 11 and Lemma 3, gives
9(VxX1,Z)=0.
Therefore we have
(39) 9(VxX,,2Z) =0, a=1,2,3

for all X € D*®E, Z € D. On the other hand for X € D*@FE, Z € D
we get

(40) g(vX&IaZ):g(ngaaZ) =0.

Hence from (39) and (40) by using the equation of Gauss for immersion
of M* in M we obtain

g(h*(X,Y),Z)=0, X,YecD'QE, ZeD.
Thus each leaf M* of D @E is totally geodesic immersed in M. O
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