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CORRELATION DIMENSIONS OF CANTOR-LIKE SETS

M1 RyEoNG LEE AND HUNG HwWAN LEE

ABSTRACT. In this paper, we calculate the lower and upper bound
of the correlation dimension([4], [6]) for a Cantor-like set([5]).

1. Introduction

The most basic tool to characterize fractal sets or attractors is their
dimensions, such as the Hausdorff dimension, correlation dimension and
box dimension, etc. To explain fractal sets or attractors induced by a
dynamics in statistical mechanics or physics, the correlation dimension is
usually used rather than the Hausdorff dimension or box dimension([4],
[6])-

So far, considerable theories of the dimension are usually studied on
the invariant set which is generated by an iterated function system of a
family of contractions(=IFS) or by the Moran construction. However,
Pesin and Weiss([5]) have defined Cantor-like sets by a symbolic con-
struction without regarding to IFS and the Moran construction. They
have obtained the lower bound and upper bound of the Hausdorff di-
mension and box dimension of a Cantor-like set F. They have extended
many of the known results on the dimensions of the set.

In this paper, we get the lower bound and upper bound of the correla-
tion dimension of F' calculating the energy with respect to an equilibrium
measure on F'. We notice that our method is a little simpler than one in
Pesin and Weiss to have the upper bound of the Hausdorff dimension of
F(see the Remark 3.5). In addition, we obtained a sufficient condition
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on which the correlation dimension is exactly equal to the Hausdorff di-
mension. Finally in this paper, we introduce an example of a Cantor-like
set generated by an infinite contractive maps.

2. Preliminaries

Fix p > 2.

Denote ¥, ={1,2,--- ,p}N = {(i1,42,- ) : 45 € {1, ,p},j > 1}.
Consider a compact set @ C £, which is invariant under the shift map
o(ie. o(Q) = Q) and a family of compact sets {A;, ,.....i, } in R?
(1 < i; < p) satisfy that the k-tuples (i1,42, -+ ,i) are Q-admissible
(k > 1) (ie., there exists w = (i1,45,---) € Q such that i’ = i; for
1<j<k)and

lim max  diam(4,;, 4,.. ;) =0,
k—oo (i1,42, - ,ix)

where diam(A) = sup{|z — y| : z,y € A} for a subset A of R9,

We assume that for any admissible sequences (i1,4s, - , i) € {1, 2,
s ,p}k, Ail,... k1 C Ail’... ik and Ail,... ik N Azll’ R 0 (ij # I; for
some j).

Set

o0
F=) U A, g i
k=1(

i1, ,i%):Q-admissible

We call F o Cantor-like set of R4([5]). For z € F and n > 0, write
D, g, in (@) for Ay, ... 5, containing . We define a bijective map IT
from F to Q as II(z) = (i1,42," -+ ,in, -+ ), where £ = NS, Ay, ... ;. (z).

Given a p-tuple & = (a3, a2, - ,qp) with 0 < a; < 1, there exists
a unique number s, such that P(s,loga;,) = 0, where P is the topo-
logical pressure([1], [5]). Let po be an equilibrium measure([1],[5]) for
the function ¢(%1,%2,---) = loga,, on @, and let m, be the pull back
measure on F' under the map Il(i.e., my = pq o I).

We recall the following definition of the correlation dimension of A(C
R¢) with respect to a probability measure 1 on A([6]);

Dy(A,n) =sup{s > 0: I;(n) < oo},

where I;(n) = [, [, lz—y|~*dn(z)dn(y) is the s-energy of A with respect
to n.
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REMARK 2.1. In the definition of D2(A,n), we can easily see that

Dy(A,n) =inf{s > 0: I;(n) = oo} = inf{s > 0: I;(n) > 0}.

In order to calculate the correlation dimension of the Cantor-like set
F, we have moderate control over the spacing or sizes of the basic sets
constructing F'.

Given 0 < 7 < 1, a vector of numbers v = (v, - ,7p) with each
0 <7 <1, and any x € F. we can find an integer n(x) such that
Yir Vineyar ST < Vi oo 7i,,,, where II(z) = (1,42, -+). Plainly,
T € Dy igo ing - e note that if y € Ay 45, and n(y) > n(z),
then Az'l,--- Vi) C Az‘h... in(z)

Let A(z) be the largest basic set containing  with the property that
Az) = Ay, iy, for some z € A(z) and Aq, . 4,y C A(z) for any
y € A(z). Then the sets A(x) corresponding to different x € F' either
coincide or are disjoint. We denote these sets by Aﬁj ) ,j=1,2,---,N..
These sets form a disjoint cover of F([5]).

Let N(z,7) denote the number of sets AY that have non-empty
intersection with the open ball B(z,) centered x and radius r.

Ven(a)

DEFINITION 2.2. ([5]) A vector v is called an l-estimating if N(z,r)
is less than some constant, uniformly in z and r. We call a symbolic
construction regular if it admits an Festimating vector.

REMARK 2.3. ([5]) If ¥ = (y1, - ,7p) is an Festimating vector for
a regular symbolic construction, then any vector o = (a, -+, ap) for
each o; <~;,7=1,---,p is also an lestimating.

In order to obtain upper estimates for the correlation dimension, we
use that the diameters of the basic sets decrease exponentially.

DEFINITION 2.4. ([5]) A vector A = (Ag, -+, Ap), 0 < A; < 1liscalled
a u-estimating vector for a construction if diam(A;, .. ;,) < CTI}_; Ay,
for a constant C > 0. The symbolic construction is called bounded if
there exists a u-estimating vector.

REMARK 2.5. (1) If A = (Aq,---,Ap) is a w-estimating vector for a
bounded symbolic construction, then any vector 8 = (61, -+ ,0p) for
each 3; > A;, i =1,---,p is also u-estimating.

(2) If the diameter of A;, ... ;, decreases very slowly to 0, then the
symbolic construction is not bounded. For example, consider diam
A . = —L_ n e N, then there is no such constant C.

21,7 5tn T op41
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3. Results

Since the shift map on a general symbolic space is expansive, the ex-
istence of an equilibrium measure on the space is known in [7]. However,
in general, this equilibrium measure is not always a Gibbs measure. For
our construction, if the Gibbs measure exists, then we can easily get the
following results by the boundedness of the Gibbs measure.

Throughout this paper, let F,Q,II, 4, m and P be as in Section 2.

LEmMA 3.1. ([5]) Let F be a Cantor-like set for a regular symbolic
construction and let y., be an equilibrium measure for any l-estimating
vector vy. Let the number s, be satisfying P(s,log~; ) = 0. Then for
r>0,a>0andall z € I71(Qy),

my(B(z,r) NII7H(Qy) < L - 75772,
where the constant L = L(k) > 0 for sufficiently large number k and the
set Q = U2,Q; (u-almost everywhere).
THEOREM 3.2. Let F' be as in the Lemma 3.1. Then s, < Dy(F, m~)

for the pull-back measure m. on F.

PrOOF. Given a vector v = (1, -+ ,7p), 0 <y <1(i=1,2,--- ,p).
Let p, be an equilibrium measure on @ corresponding to the function
logy;,. For each w = (i1, -+ ,in, ) = II(z) € Q. Put ko = min{k :
py(Qr) > 0}. Fix k > ko and 0 < r < 1.

Now, in order to calculate the energy of F with respect to the measure
m., we put ¢:(x) = [ ]z — y| *dm.(y). We have, using the Theorem
in [3] and the Lemma 3.1,

¢:(z) = /an_l(Qk) |z — y| " dm,(y)
= A/Ooc my({y € FNITY(Qy) : |& — y[™t > r})dr
- /Ooo Mo (B(z,r ™" NI (Qy))dr
—¢ /O e iy (Be,€) NI (Qk)de

o0

< t[./ol € im (B(z,e) NTT7H(Qk))de + /1 e_t_lmﬂ,(F)de]

1
< Lt/ Syt ge 4 m,(F) < oo
0
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for all0 <t < s, —a. Hence, forall t < s, — a,

Ii(my) = A¢t($)dmv($) < 00,

which implies Dy(F,m,) > s, — a. Since a was arbitrarily small,
Dy(F,m.y) > 4. O

COROLLARY 3.3. Let F be the Cantor-like set by a symbolic con-
struction with exponentially large gaps ; there exists a number 0 < 3 < 1
such that d(A,, ... i, Dj,... ;) = CB™ where C > 0 and d(A,B) =
inf{le —y|:x € A, y€ B} . Then
(1) the construction is regular with l-estimating vector v = (8,--- , ).
(2) s, < Dy(F,m,), where m, is an equilibrium measure on F of the
vector ~y.

THEOREM 3.4. Let F be the Cantor-like set for a bounded symbolic
construction and let m) be an equilibrium measure on F for any u-
estimating vector \. Then Dy(F,m)) < Sx.

PROOF. In [4], we have the upper bound of the Hausdorff dimension
of F, dimy F < sy, for the number s, satisfying P(sylogA;,) = 0. Ow-
ing to the relation of the correlation dimension and Hausdorff dimension,
DQ(F,T)’L)‘) SdimHFSS)\. O

REMARK 3.5. In the proof of Theorem 3.4, we can obtain that Dy (F,
my) < sy by calculating the energy, i.e. for all ¢ > s,,

timy) = [[ 1o =1 dma(@) dm(y) = o

So we can get dimy F' < sy(see [2]).

COROLLARY 3.6. Let F be the Cantor-like set by Moran symbolic
construction ; each basic set A;, ... ;, satisfies

n

B(z,0 [ M\;) € Aiy i, € Blw, G2 [T M),
i=1

=1

where 0 < \; < 1(i =1,--- ,p) and constants C1,C2 > 0. Then
(1) the construction is regular and bounded with l-estimating vector and
u-estimating vector equal to A = (A1, -+, Ap).



286 Mi Ryeong Lee and Hung Hwan Lee

(2) sy = Dy(F,my) where myis an equilibrium measure on F of the
vector A. Moreover, owing to the result in [5], we can get dimg F =
S) = DQ(F, m)\).

The following Theorem is an immediate consequence from above The-
orems and the results of [5].

THEOREM 3.7. Let F be the Cantor-like set for a regular and bound-
ed symbolic construction. Then s, < Do(F,m,) and Dy(F,my) < sy,
where s, and sy are the unique solutions of the equations P(sylog~;,) =
0 and P(sylog X, ) = 0, respectively, for an l-estimating vector v and
u-estimating \. Moreover, if y; = \; fori =1,--- ,p, then

Sy = sx = Do(F,m,) = Da(F,my) = dimg F.

For the case of simple construction({5]), @ = X, using some operator
theories in [5], we have the following results for the correlation dimension
which is similar to results in [5].

COROLLARY 3.8. Let F' be the set for a simple regular and bounded
construction and let p, and py be equilibrium measures for any I-
estimating vector v and any u-estimating vector \ respectively. Then,
for the pull-back measures m~ and my on F,

(1) sy < Dy(F,m.,) and Dy(F, my) < sx, where s, and s, are the unique
solutions of the equations Y ©_ vf =1 and Y_%_, \l = 1, respectively.
(2) In particular, if the measures p, and py are Gibbs measures in simple
construction, then the measures satisfy the following equations

” n
uy(Ciroi) = [ and pa(Ciyi) = T A
j=1 =

where Cj, ... ;. is a cylinder set.

n

4. Examples

ExaMpPLE 4.1. Consider the middle third Cantor set F' constructed
by repeated removal of the middle third of intervals on [0, 1]. Then, for
a vector vy = (3, 3),

(1) F is an regular and bounded set of the construction for the vector
.

(2) dimy F = i%g% = Dy(F, m,) about the Gibbs measure m. on F.
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PROOF. Let &3 = {1,2,3}N. Put Q = {1,2}Y. Then Q C ;.
Since the diameter of basic intervals, diam(A, ... ;,) = (3)" for all
(41, -+ ,in) € {1,2}", each i; € {1,2}, we can easily see that the given
vector y = (3, ) is an l-estimating and u-estimating vector of the con-
struction.

Put s, satisfying P(s. -log~;,) = 0. Define a probability measure m.,
on F by for any (i1, -+ ,1,) € {1,2}" and n > 1,

1 ’I’LS»Y
= ()

We can see that the probability measure m, on F' is an equilibrium

measure and the Gibbs measure on F. Also we obtain that s, = }2§§

In (1], we know that dimpy F' = s,. We can easily check that Dy (F, m,)

= s, by calculating the potential energy. Hence dimg F' = i%g—g =
Dy(F, m,) for the Gibbs measure m., on F. O

The following example is a generalization of an loosely self-similar set
([2]) which is constructed by an infinite contractive maps.

ExAMPLE 4.2. Consider a sequence of contraction maps {¢;, ... i, }
for (i1, -+ ,i,) € {1,2}" (n=1,2,---) as follows; for all z,y € [0, 1],

(Tih--' yin Ly rih“',iny) (in = 1)
8 ) .
Yiy o i = (Tig,eoe i@+ 9’ Tiy o y) (=1, iy =2)

8, . .
iy, inY + §) (11 =2, i, = 2),

where 74, .. ;,_;1 € (5, 3] and 7y ... 5,2 € (0,5] foralln=1,2,- .
Put

(rilv"' 7in$ +

Ailyizv"' Jin 1/)1'1 © wil,’iz ©---0 wih'“ ,in([(): 1] X [07 1])

o0
F=J N Aiyig,o in-
n=1 (i1, i )€{1,2}7
Then (1) the set F is a Cantor-like set for simple regular symbolic con-
struction for an l-estimating vector v = (3, §).
(2) The set F is a Cantor-like set for simple bounded symbolic construc-

tion for an u-estimating vector A = (3, ).

(3) % = s, < Dy(F,m,) and Dz(F,m,) < sy = 3 for the Gibbs

measures m., and my, for the given vectors v and A.

and set
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REMARK 4.3. In Example 4.2, we can take r;, ... ;, = r; for each
i; € {1,2} (j = 1,2,--- ,n). Then the set F is a loosely self-similar
set([2]). In particular, if we take i, = § (in = 1) and r;, = § (in, = 2)
for n = 1,2,---, then a vector v = (%, —é) is an [-estimating and u-
estimating vector for the set F'. Moreover, owing to the fact dimy F =
+([2]), we have Dy(F,m,) = 1+ = dimy F for the Gibbs measure m., on

F.
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