DOI QR코드

DOI QR Code

ORDERED GROUPS IN WHICH ALL CONVEX JUMPS ARE CENTRAL

  • Bludov, V.V. (Institute of Mathematics and Economics Irkutsk State University) ;
  • Glass, A.M.W. (Department of Pure Mathematics and Mathematical Statistics Centre for Mathematical Sciences) ;
  • Rhemtulla, Akbar H. (Department of Mathematical and Statistical University of Alberta)
  • Published : 2003.03.01

Abstract

(G, <) is an ordered group if'<'is a total order relation on G in which f < g implies that xfy < xgy for all f, g, x, y $\in$ G. We say that (G, <) is centrally ordered if (G, <) is ordered and [G,D] $\subseteq$ C for every convex jump C $\prec$ D in G. Equivalently, if $f^{-1}g f{\leq} g^2$ for all f, g $\in$ G with g > 1. Every order on a torsion-free locally nilpotent group is central. We prove that if every order on every two-generator subgroup of a locally soluble orderable group G is central, then G is locally nilpotent. We also provide an example of a non-nilpotent two-generator metabelian orderable group in which all orders are central.

Keywords

References

  1. Series in Algebra v.7 Partially Ordered Groups A. M. W. Glass
  2. Proc. London Math. Soc. v.7 Residual properties of infinite soluble groups K. W. Gruenberg https://doi.org/10.1112/plms/s3-7.1.29
  3. Proc. London Math. Soc. v.4 Finiteness conditions for soluble groups P. Hall
  4. Lectures given at the Canadian Mathematical Congress Nilpotent Groups P. Hall
  5. Proc. London Math. Soc. v.16 The stability group of a series of subgroups P. Hall;B. Hartley https://doi.org/10.1112/plms/s3-16.1.1
  6. J. Aust. Math. Soc. (Series A) v.45 The Group of Formal Power Series Under Substitution D. L. Johnson https://doi.org/10.1017/S1446788700031001
  7. Algebra & Logic v.7 Intersection and union of relatively convex subgroups of orderable groups A. I. Kokorin https://doi.org/10.1007/BF02218598
  8. Fully Ordered Groups A. I. Kokorin;V. M. Kopytov
  9. Algebra & Logic v.37 Groups of Formal Power Series are Fully Orderable V. M. Kopytov https://doi.org/10.1007/BF02671588
  10. The Theory of Lattice-ordered Groups V. M. Kopytov;N. Ya. Medvedev
  11. Proc. Amer. Math. Soc. v.3 Two notes on nilpotent groups R. C. Lyndon https://doi.org/10.2307/2032591
  12. Math. Z. v.137 Varieties of lattice-ordered groups J. Martinez https://doi.org/10.1007/BF01214370
  13. Lecture Notes in Pure & Appl. Math. v.27 Orderable Groups R. B. Mura;A. H. Rhemtulla
  14. Osaka J. Math. v.2 On linearization of ordered groups A. H. Ohnishi
  15. Czechoslovak Math. J. v.33 Nilpotent, weakly abelian and Hamiltonian lattice-ordered groups N. R. Reilly
  16. Proc. Amer. Math. Soc. v.41 Residually $F_p$ groups, for many primes p, are orderable A. H. Rhemtulla https://doi.org/10.2307/2038810
  17. Grad. Texts in Math. v.80 The Theory of Groups ($2^{nd}$ edition) D. J. S. Robinson
  18. Ucen. Zap. Ivanovs. Gos. Ped. Inst. v.4 Infrainvariant subgroups D. M. Smirnov
  19. J. Algebra v.20 Free subgroups in linear groups J. Tits https://doi.org/10.1016/0021-8693(72)90058-0

Cited by

  1. On centrally orderable groups vol.291, pp.1, 2005, https://doi.org/10.1016/j.jalgebra.2005.05.014
  2. On SolvableR* Groups of Finite Rank vol.31, pp.7, 2003, https://doi.org/10.1081/AGB-120022225