DOI QR코드

DOI QR Code

GENERALIZED SET-VALVED STRONGLY NONLINEAR VARIATIONAL INEQUALITIES IN BANACH SPACES

  • Cho, Y.J. (Department of Mathematics Gyeongsan national University) ;
  • Fang, Y.P. (Department of Mathemetics Sichuan University) ;
  • Huang, N.J. (Department of Mathemetics Sichuan University) ;
  • Kim, K.H. (Department of Mathematics Gyeongsan national University)
  • Published : 2003.03.01

Abstract

In this paper, we introduce and study a new class of generalized strongly nonlinear variational inequalities with setvalued mappings. By using the KKM technique, we prove the existence and uniqueness of solution for this class of generalized setvalued strongly nonlinear variational inequalities in reflexive Banach spaces. Our results include the main results of Verma [16], [17] as special cases.

Keywords

References

  1. Appl. Math. Lett. v.13 no.6 Sensitivity analysis for strongly nonlinear quasi-variational inclusions R. P. Agarwal;Y. J. Cho;N. J. Huang https://doi.org/10.1016/S0893-9659(00)00048-3
  2. J. Inequal. Appl. v.5 no.5 Random generalized set-valued strongly nonlinear implicit quasi-variational inequalities Y. J. Cho;N. J. Huang;S. M. Kang https://doi.org/10.1155/S1025583400000308
  3. J. Math. Anal. Appl. v.246 Generalized set-valued variational inclusions in Banach spaces S. S. Chang;Y. J. Cho;B. S. Lee;I. H. Jung https://doi.org/10.1006/jmaa.2000.6795
  4. Math. Annal. v.266 Some properties of convex sets related to fixed point theorem K. Fan https://doi.org/10.1007/BF01458545
  5. Variational Inequalities and Network Equilibrium Problems F. Giannessi;A. Maugeri
  6. Math. Programming v.48 Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications P. T. Harker;J. S. Pang https://doi.org/10.1007/BF01582255
  7. J. Math. Anal. Appl. v.216 On the generalized implicit quasi-variational inequalities N. J. Huang https://doi.org/10.1006/jmaa.1997.5671
  8. Computers Math. Appl. v.35 no.10 A new completely general class of variational inclusions with noncompact valued mappings N. J. Huang https://doi.org/10.1016/S0898-1221(98)00067-4
  9. Z. Angew. Math. Mech. v.79 Generalized nonlinear implicit quasi-variational inclusion and an application to implicit variational inequalities N. J. Huang https://doi.org/10.1002/(SICI)1521-4001(199908)79:8<569::AID-ZAMM569>3.0.CO;2-G
  10. Computers Math. Appl. v.40 no.2-3 Generalized nonlinear mixed quasi-variational inequalities N. J. Huang;M. R. Bai;Y. J. Cho;S. M. Kang https://doi.org/10.1016/S0898-1221(00)00154-1
  11. J. Math. Anal. Appl. v.256 Auxiliary principle and iterative algorithms for generalized set-valued strongly nonlinear mixed variational-like inequalities N. J. Huang;C. X. Deng https://doi.org/10.1006/jmaa.2000.6988
  12. Math. Inequal. Appl. A new class of generalized nonlinear mixed quasi-variational inequalities in Banach spaces N. J. Huang;Y. P. Fang;Y. J. Cho
  13. Computers Math. Appl. v.37 no.10 On the generalized set-valued strongly nonlinear implicit variational inequalities N. J. Huang;Y. P. Liu;Y. Y. Tang;M. R. Bai https://doi.org/10.1016/S0898-1221(99)00123-6
  14. Inequality Problems in Mechanics and Applications P. D. Panagiotopoulos
  15. SIAM J. Control. Optim. v.34 no.5 Modified projection-type methods for monotone variational inequalities M. V. Solodov;P. Tseng https://doi.org/10.1137/S0363012994268655
  16. Appl. Math. Lett. v.10 no.4 Nonlinear variational inequalities on convex subsets of Banach spaces R. U. Verma https://doi.org/10.1016/S0893-9659(97)00054-2
  17. Comment. Math. Univ. Carolinae v.39 no.1 On monotone nonlinear variational inequality problems R. U. Verma
  18. Publ. Math. Debrecen v.53 no.1-2 Generalized pseudo-contractions and nonlinear variational inequalities R. U. Verma
  19. KKM Theory and Applications G. X. Z. Yuan
  20. Nonlinear Functional Analysis and Its Applications Ⅳ E. Zeidler

Cited by

  1. On the Index of Solvability for Variational Inequalities in Banach Spaces vol.16, pp.1, 2008, https://doi.org/10.1007/s11228-007-0046-8
  2. The penalty method for generalized multivalued nonlinear variational inequalities in Banach spaces vol.20, pp.8, 2007, https://doi.org/10.1016/j.aml.2006.11.002