Bull. Korean Math. Soc. 40 (2003), No. 1, pp. 159165

THE BOUNDEDNESS OF SOLUTIONS FOR
STOCHASTIC DIFFERENTIAL INCLUSIONS

YonG SIK YUN

ABSTRACT. We consider the stochastic differential inclusion of the
form dX; € o(t, X:)dB:+b(t, X¢)dt, where o, b are set-valued maps,
B is a standard Brownian motion. We prove the boundedness of
solutions under the assumption that ¢ and b satisfy the local Lip-
schitz property and linear growth.

1. Introduction

Let (Q,F, P) be a complete probability space with a right-continuous
increasing family (J:):>0 of sub o—fields of § each containing all P-null
sets. Let B = (B¢)¢>p be an r-dimensional (§;)-Brownian motion. We
consider the following stochastic differential inclusion.

(1.1) dX: € o(t, X;)dB; + b(t, X¢)dt,

where o : [0,7] x R —» P(RY®R"), b:[0,7] x R? — P(R?) are set-
valued maps. In recent years the study of the existence and properties of
solution for these stochastic differential inclusions have been developed
by many authors ([1], [5]). Furthermore the results for the viable solu-
tions have been made ([3], [7]). For the stochastic differential equation
associated with (1.1), many results for the existence, uniqueness and
properties of solutions have been done under various conditions that o
and b are continuous and bounded or Lipschitzean or Holder continuous
([4]). We proved the existence of solution for stochastic differential in-
clusion (1.1) under the condition that o and b satisfy the local Lipschitz
property and linear growth ([6]).
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In this paper, we prove any solution for stochastic differential inclu-
sion (1.1) is bounded.

2. Preliminaries

We prepare the definition of solution for stochastic differential inclu-
sion and some results for the stochastic differential equation and selec-
tion theorems. ‘

DEFINITION 2.1. An r-dimensional continuous process B =
(Bt)te[0,00) is called an r-dimensional (§F)-Brownian motion if it is (F;)-
adapted and satisfies

Elexpli < §, Bt — Bs >] | §.] =exp[—(t — 5)[¢]*/2], as.
for every £ €R" and 0<s<t.

Let us consider the stochastic differential inclusion
dX; € O'(t, Xt)dBt + b(t, Xt)dt

with the initial value Xy = x, where o : [0,T] x R — P(REQR"), b :
[0,7) x R — P(R?) are set-valued maps and z is a R%valued Fo-
measurable function.

DEFINITION 2.2. A predictable continuous stochastic process X =
{X:, t € [0,T]} is said to be a solution of (1.1) on [0,T] with the initial
condition z¢ if there are predictable random processes f : Q x [0,T] —
RI®R", g: Q x [0,T] — R? such that f(¢) € o(t, Xz), g(t) € b(t, X;)
for every t € [0,T] almost surely and

Xt=m+/0tf(s)st+/Otg(s)ds.

For the stochastic differential equation

¢ ¢
(2.1) X, ==z +/ o1(s, Xs)dBs +/ b1 (s, Xs)ds,
0 0

where a1 : [0,7T] x R - REQR", b; : [0,7] x R? — R? are B([0,T]) ®
B(R%)-measurable and z is Fo-measurable, the following theorems are
well known.
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THEOREM 2.3. ([4]) If 01 and b, are continuous and satisfy the linear
growth condition

lloa (&, @)1 + [ba (¢, 2)1* < K (1 + |2f?),

for some positive constant K, then (2.1) has a solution on [0,T].

THEOREM 2.4. ([4]) Assume that for each N > 0, there exists a
constant Cy > 0 such that

llow(t, @) = or(t, 9)I1* +ba(t, @) = 01(t,y)|* < Cn - |z —yl, =,y € Bw,

where By = {z € R%,|z| < N} and ||o1|]> = ¥7_, S0, |(00)if? =
tr(c10%). Then (2.1) has a unique solution X; up to explosion time.

3. Main results

For a Banach space X with the norm ||-|| and for non-empty sets A, A’
in X, we denote ||A]| = sup{]ja]| | a € A}, d(a, A") = inf{d(a,a’') | a' €
A'}, d(A,A") = sup{d(a,A’) | a € A} and dgy(A, A") = max{d(4, A"),
d(A’, A)}, a Hausdorff metric. Given a family of sets {F, | o € A}, a
selection is a map a — f, in F,,. The most famous continuous selection
theorem is the following result by Michael.

THEOREM 3.1. ([2]) Let X be a metric space, Y a Banach space. Let
F from X into the closed convex subsets of Y be lower semi-continuous.
Then there exists f : X — Y, a continuous selection from F.

If o and b satisfy the linear growth condition, then clearly any selec-
tions from o and b satisfy the linear growth condition. Thus by Theorem
2.3 and Theorem 3.1, (1.1) has a solution if o and b are closed convex
valued lower semi-continuous satisfying the linear growth property.

THEOREM 3.2. Assume that o and b are lower semi-continuous with
closed convex values satisfying the linear growth condition

llo(t, 2)|1* + Ib(t, 2)1* < K(1+ [z]?),

for some constant K. Then (1.1) has a solution on [0, T].

The existence of solution to (1.1) can be proved also under Lipschitz
condition using the fixed point theorem.
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THEOREM 3.3. ([6]) Assume that o : [0,T] x R —» P(RE®R"), b:
[0,T] x R? — P(R?) are closed convex set-valued functions which are
Lipschitz, i.e., there exists a constant L > 0 such that

{ dH(o'(tvw)’U(tay)) < L. IIE - yla
du(b(t,z),b(t,y)) < L- |z —yl.

Then there exists a solution for the stochastic differential inclusion

(1.1).

For the proof of the existence of solution for stochastic differential
inclusion (1.1) under the local Lipschitz condition, we prepare the local
Lipschitz barycentric selection based on that proposed by Aubin[2]. Let
A C R™ be a compact convex body, i.e., a compact set with nonempty in-
terior, and let m,, be an n-dimensional Lebesgue measure. Since m,(A)
is positive, we can define the barycenter of A as

1

Then the barycenters of A and A' = A+ B belong to A, where B is the
closed unit ball in R™ if A be a compact and convex set ([2]). Using this,
we have the following local Lipschitz barycentric selection theorem.

PropPOSITION 3.4. ([6]) Let F : R®™ — P(R™) be a local Lipschitz
set-valued map with compact convex images, i.e., there exists a constant
Ky > 0 such that

dp(F(z), F(y)) < Kn -z —yl, Vz,ye€ By ={zeR"|z| <N}

Assume moreover that there exists a constant C' > 0 such that || F(z)|| <
C - (1+ |z|), for every x € R™. Then there exist a constant C > 0 and
a single valued map f : R™ — R", local Lipschitzean with constant Cn,
a selection from F'.

Proof. Since the single valued map b' : z — b(F(x)+ B) is a selection
of F', we have to prove that it is a local Lipschitzean selection.

Fix z,y € By. Call ®(z) = F(z) + B and ®(y) = F(y) + B. Since
[|®(x)|| < ||F(2z)+B|| < ||F(2)|+1 < C-(A+]z))+1 < C-(1+N)+1 =
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Cn' and m,(®(z)) < Cnr, we have

1 1
mn(®(z)) /cp(z) 7 dmn = mn(2(y)) A(y) #
1 1
< ‘( mn(®(z)) B mn(®(y)) ) [p(z)m@(y)m @
+ ‘ _1___ z dm,,
Mn(®(2)) Jo@na)

1
- ma(2(y) L(y)\@(m) 7 dmn
< mn(®(z)) — ma(®(®))| - Cn+ - Cne [ (ma(B))?
+ {ma(2(z) \ 2(y)) + ma(2(y) \ (z))}
-Cn+ - Cnr [my,(B).

The above can be estimated in terms of dy (®(z), @(y))(see [2]). Thus

we have
(6% (z) — b (y)| < C - du(F(z), F(y))
<C-Ky-lz-y|=Cn-lz—yl,

for some constants C,Cy > 0, ie., f = b! is the required local Lips-
chitzean selection. 0]

By Theorem 2.4 and Proposition 3.4, we have the following theorem.

THEOREM 3.5. ([6]) Assume that for each N > 0, there exist con-
stants C' > 0 and Cy > 0 such that

dH(O'(t,iE),O’(t,y)) SCN'Ix—yla z,y € By,

dH(b(tvx)’b(ta y)) < CN ' ICL' - y|i T,y € BNa
llo(t, )l + [b(t, )| < C-(1+]z]), =ze€R?,

where By = {z € R%,|z| < N}. Then (1.1) has a solution X;.

Furthermore, we have the following main theorem for boundedness of
solutions.

THEOREM 3.6. Let X, be any solution of (1.1). Then X, is bounded,
i.e., E[supg<s<; | Xs|F] < oo for p > 2.
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Proof. Let X; be a solution. Then there exist f; € 0(X;) and g €
b(X,) such that

t t
Xi=x +/ fsdBs +/ gsds.
0 0

Since
t
El sup |X,[P] < 3°~![a]? + 3¥~1C,E [{/ FiPdsy” |
0<s<t 0
t
+37 [{ [ la.fasp |
0
t t
<P ol + PGE [([ 1Pds) | 1455 ]
0 0
t t
+37E | / 19 |Pds{ / 1dsr! |
0 0
t
<3P+ @ iGTE [ B(f P
4]
t
+ 3p-1pp / E[|g.[]ds
0
t
< 3P-glP 4 3P~ 10, T / E[jo(X,)[P]ds
0
t
+ gp-tp-t / E[|b(Xs)|"]ds
0
pez [t
<@ e+ ¥ 1OTF [ KL+ DXL P2 ds
0
t
+ gp-irrl / KP(1+ E[| X,[P])27ds,
1]
if we put ¢(t) = E[supg<s<: | Xs|?],
t
o(t) < 3P Y|P + 6P LKPTEC, + 6”_1KPT%201/ p(s)ds
0
t
+ 6P LKPTP 4 6P  KPTP! / @(s)ds
0
= 3P~ g|P + 6P KPTE(C) + 1)

t
+ 6P LK (TR0, 4+ TP Y) / o(s)ds.
0
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By Gronwall’s inequality,

t) < (37 Yal? + 6°"'KPT%(Cy + 1))-exp(6* ' KP(T"7 Cy +TP~1)t).
®

Hence X; is bounded. O

(1]
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