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AFFINENESS OF DEFINABLE C"
MANIFOLDS AND ITS APPLICATIONS

TOMOHIRO KAWAKAMI

ABSTRACT. Let M be an exponentially bounded o-minimal expan-
sion of the standard structure R = (R, +, -, <) of the field of real
numbers. We prove that if r is a non-negative integer, then every
definable C™ manifold is affine. Let f : X — Y be a definable C*
map between definable C' manifolds. We show that the set S of
critical points of f and f(S) are definable and dim f(S) < dimY.
Moreover we prove that if 1 < s < r < oo, then every definable
C® manifold admits a unique definable C” manifold structure up to
definable C” diffeomorphism.

1. Introduction

Let M denote an o-minimal expansion of the standard structure
R = (R,+,-,<) of the field of real numbers. The term “definable”
means “definable with parameters in M”, and any manifold in this pa-
per does not have boundary, unless otherwise stated. Several properties
of definable C" manifolds and definable C" maps are studied in [9], [10],
[8]. The Nash category coincides with the definable C* category based
on R [15], and definable C” categories based on M are generalizations
of the C™ Nash category. General references on o-minimal structures are
(3], [5], see also [14]. Further properties and constructions of them are
studied in [4], [6], [12].

We say that M is polynomially bounded if for every function f :
R — R definable in M, there exist a natural number k and a real
number o such that |f(z)| < z* for any z > zp. Otherwise, M is
called exponential. One of typical examples of polynomially bounded
structures is R. By a result of C. Miller [11], if M is exponential,
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then the exponential function R — R,z — €% is definable. We call
M exponentially bounded if for every function h : R — R definable
in M, there exist a natural number [ and a real number z; such that
|h(z)| < exp)(x) for any = > z;, where exp;(z) denotes the [th iterate
of the exponential function, e.g. expy(z) = **. Note that the problem
that every o-minimal expansion M of R is exponentially bounded is still

open (e.g. [2]).
THEOREM 1.1. If M is exponentially bounded and 0 < r < oo, then
every definable C™ manifold is affine.

Theorem 1.1 is a generalization of 1.1 [10] and an equivariant C*
version of Theorem 1.1 is true if M is exponential and the manifold is
compact (see 1.2 [10]). If M =R and r = oo, then Theorem 1.1 is not
true [13].

As applications of Theorem 1.1, we have the following two results.

Let A be a subset of an n-dimensional definable C™ manifold X with
a definable C" atlas {(U;, ¢; : U; — R™)}; and r > 0. We say that A has
measure 0 in X if each ¢;(U; 1 A) C R™ has measure 0 (e.g. see P.68
7).

THEOREM 1.2. Let X and Y be definable C' manifolds and f : X —
Y a definable C' map. If M is exponentially bounded, then the set S
of critical points of f and f(S) are definable and dim f(S) < dimY. In
particular, the measure of f(S) inY is 0.

Without assuming that f is definable, there exists a C! map from
R? to R! whose critical point set has positive measure [17]. Note that
if dimX < dimY and f is a definable C! imbedding, then S = X, in
particular, dim f(S) = dim X. Thus in Theorem 1.2, one cannot replace
dim f(S) < dimY by dim f(S) < min(dim X,dimY’).

THEOREM 1.3. If M is exponentially bounded and 1 < s < r < 00,
then every definable C® manifold admits a unique definable C" manifold
structure up to definable C" diffeomorphism.

By [13], there exists an uncountable family { X } ¢ca of Nash manifolds
such that they are C? Nash diffeomorphic and that X is not Nash
diffeomorphic to X, for A # p. Thus if M = R and r = oo, then
Theorem 1.3 does not hold.

2. Proof of results

To prove Theorem 1.1, we need the following three results.
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PropPosITION 2.1 (3.2 [10]). Let X be an affine definable C™ manifold
and 0 < r < 0o. Then X can be definably C" imbeddable into some
R™ such that X is closed in R™. Moreover it is possible to definably C™
imbeddable into some R¥ such that X is bounded and X — X consists
of at most one point, where X denotes the closure of X in R¥.

Let e, : R — R, n € N be the function defined by

—exp,_1(1/2%) 0
e"(‘”):{e 0, iio’

where expo(z) = z. Then elementary computations show the following
proposition.

ProPOSITION 2.2. (1) For any polynomial function P(z1,--- ,zy,) in
n variables,

. 1 1 1
il_r%P (—x—,expl(?), ce ,elfpn—l(gg)) en(z) = 0.

2) Every e, is a C* function.
(

Since M is exponentially bounded, in the proof of C.5 [5], we can
take ¢(t) = ten(t) for some n € N. Hence a similar proof of C.14 [5]
proves the following proposition.

PRroOPOSITION 2.3 ([5]). Let A be a non-empty compact definable
subset of R™ and f, g two continuous definable functions on A such that
f710) ¢ g~1(0). If M is exponentially bounded, then there exist a
natural number k and a positive constant ¢ such that ex(g) < c|f| on A.

Proof of Theorem 1.1. Let X be a definable C” manifold. If dim
X =0, then X consists of finitely many points. Thus the result holds.

Assume that m := dim X > 1. Let {¢; : U; — R™}._, be a definable
C" atlas of X. Then each ¢;(U;) is a noncompact definable C" submani-
fold of R™. Hence by Proposition 2.1, we have a definable C” imbedding
#. : ¢;(U;) — R™ such that the image is bounded in R™ and

@ 0 ¢i(Us) — ¢; 0 ¢:(Us)

consists of one point, say 0. For a sufficiently large positive integer n,
set

m’ m’
n: R™ — Rm,ﬂ?(xla tr 7xm’) = (Zen(xj)xly e 7Zen($j)xm')a
j=1 j=1
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gi: Ui > R™ ,noghog;.

Then g; is a definable C™ imbedding of U; into R™ .

We now prove that the extension §; : X — R of g; is defined by
gi = 0 on X — U; is of class definable C". It is sufficient to see this
on each definable C" coordinate neighborhood of X. Hence we may
assume that X is open and bounded in R™. We only have to prove
that for any sequence {a:}:2; in U; convergent to a point of X — U;
and for any a € (NU {0})™ with ]al < r, {D~ g,(at)}t 1 converges

to 0. On the other hand, g; = (3_7%; en(dij)Pi1, -+ 27 len(gbz])qﬁm/)
where ¢} 0 ¢; = (¢i1," - , dims). By the construction of ¢y;, {di;(at) 52,
converges to 0. Hence for any natural number k, {ex(¢i;(at))dis(az)}e2;
converges to 0. Assume that if || < r—1, then there exists some K € N
such that if k > K, then D*(ex(dij(as))pis(as)) — 0 as t — oo. Let
D%(ex(¢ij(z)))¢is(z) = F(x)er(¢si(z)). Then F is a definable Ccrlel

map on U.
Let
_ OF  O¢ij
"p - max{l, |8$1 |7 | 8(13’1 |}
Define
0. min{|¢s;], 1/} on U i = ¢i; on Uj
b= 0 on X —Uj, Y o on X —Uj,.

Then 6;; and ¢~¢j are continuous definable maps on X such that
X —U; C (855)70) = (¢4)7"(0).

Moreover by the construction of ¢;;, 6;; and d;f;:j, 0;; and ¢~ij are ex-
tendable to continuous definable maps on R™. Hence by Proposition
2.3, there exist a positive integer a, a positive number b and a definable
open neighborhood V of X — U; in X such that ey (¢;) < bj6i;| on V.

On the other hand, by the definition of 8;;, |46;;| < 1 on U;. Thus
[#]eq(di;) < b. Hence if n > N := K +a+1, then

A (D (en$i)10) = g (Fen(85)

oF
_ OF - B en(¢i )
= 8—:616”(¢’L]) + (FeK(d)ZJ))(Rl BK(¢'Z7)

)’



Affineness of definable C" manifolds and its applications 153

where R; = 2(%?/¢f'j)exp1(¢71j) e expn_l(al_g—_). Thus using the induc-
1) ij
tive hypothesis and Proposition 2.2,
0

E(Da(en(d’ij)(bis»l
oF - B en(pij)
< |5g|en(¢w) + 'FGK(QszJ)HRlIeK((ij)
1 1
en{dij) 2ben (¢i;) expl(ag) B .exp"_l(gg)
T eq(dij) T eK(¢])|ea(¢ij)eK(¢ij) |31

By the above argument, replacing some larger N, if || < r and
n > N, then |D*(en(¢s;)¢is)] — 0. Therefore if n > N, then each §;
is a definable C™ map and the function #; : X — R defined by h; =
V(@i1)2 + - + (§imr )% + L is a definable C™ function with h;(X —U;) =
1, (1 <4 <), where §; = (Gi1, -, Gim ), (1 <3 <1). It is easy to see
that

(gl)"' 7!jlah1a"' ahl) 1 X Hle, X ]Rl
is a definable C™ imbedding. O

Proof of Theorem 1.2. Since M is exponentially bounded and by
Theorem 1.1, we may assume that X and Y are affine.

The first half of the theorem is obvious. We have only to prove the
latter half. If dim X < dimY, then dim f(S) < dim f(X) < dim X <
dim Y. Thus we assume that dimY < dim X.

By Sard’s theorem (e.g. 3.1.3 [7]), if r > max(0,dim X — dimY),
then the set of critical values of every C” map from X to Y has measure
0in Y. Fix such an r.

By the definable C” cell decomposition theorem (e.g. 7.3.3 [3]), there
exists a finite partition {C;}; of X into definable C" cells such that each
flC; : C; — Y is a definable C™ map. Note that every C; is a definable
C" submanifold of X and that C; is open in X if dim C; = dim X,

Let K; denote the set of critical values of f|C; : C; — Y and let
K = f(S). Then by Sard’s theorem, each K; has measure 0 in Y. Thus
dim K; < dimY. Hence dim U; K; < dimY.

We now prove K C U;K; Udimc,<dimy f(Ci). Let y € K. Then
there exists an z € X = U;C; such that y = f(z) and the rank of
the Jacobian of f at z is smaller than dimY. Assume that z ¢ C;.
If dimC; < dimY, then y = f(:t) € Udimci<dimyf(ci). If dimC; =
dim X, then y = f(z) € K; because C; is open in X. Assume that
dimY < dimC; < dim X. Since C; is a definable C" submanifold of X.
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there exists a definable C” chart ¢ : U — V < RF of X around z such
that ¢(z) = 0 and ¢(C;NU) = VNR!, where k = dim X, = dim C; and
R! = R x 0 C R*. The Jacobian A of (f|C;)o¢~! at ¢(z) is a submatrix
of the Jacobian B of f o ¢! at ¢(z). Then the determinant of every
minor of B of degree dimY at x is 0 because dimY < dim C; < dim X.
Hence the rank of A at ¢(z) is smaller than dimY. Thus y € K;.
Therefore K C U; K; Udim ¢; <dim Y f(C,)

Since dim U; K; < dimY and dim f(C;) < dim C;, dim K = dim f(5)
<dimY. U

To prove Theorem 1.3, we need the following several results.

PROPOSITION 2.4 (1.3 [8]). Let 1 < r < co. Then every definable C”
submanifold X of R has a definable C" tubular neighborhood (U, p) of
X in R™, namely U is a definable open neighborhood of X in R™ and
p:U — X is a definable C" map with p|X = idx.

THEOREM 2.5 (1.2 [9]). If 0 < r < oo, then every noncompact affine
definable C" manifold is definably C" diffeomorphic to the interior of
some compact affine definable C™ manifold with boundary.

THEOREM 2.6 (5.8 [8]). If2 < r < oo, then every compact affine de-
finable C™ manifold with boundary admits a definable C" collar, namely
there exists a definable C" imbedding ¢ : 80X x [0,1] — X such that
#|(8X x {0}) is the inclusion 8X — X, where the action on [0,1] is
trivial.

Note that Proposition 2.4, Theorem 2.5 and 2.6 are true in more
general settings (see 1.3 [8], 1.2 [9] and 5.8 [8]).

The following two results are algebraic realizations of compact C'*°
manifolds.

THEOREM 2.7 ([16]). Every compact C* manifold is C* diffeomor-
phic to a nonsingular algebraic set.

THEOREM 2.8 ([1]). Let X’ be a compact C*° submanifold of a com-
pact C* manifold X. Then there exist a nonsingular algebraic set Y
and its nonsingular algebraic subset Y’ such that (X; X') is C* diffeo-
morphic to (Y;Y").

The following is a result for raising differentiability of manifolds

THEOREM 2.9 (2.2.9 [7]). If 1 £ s < oo, then every C° manifold
admits a compatible C* manifold structure. In other words, for any

C*® manifold (X, 8), there exists a C*™ structure §' on X such that idx :
(X,0) — (X,8) is a C* diffeomorphism.
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Some refinement of the proof of 2.2.9 [7] proves the following relative
version of it.

THEOREM 2.10. Let X' be a compact C° submanifold of a compact
C® manifold X and 1 < s < oco. Then there exist a compact C®
manifold Y and its compact C* submanifold Y' such that (X; X') is
C* diffeomorphic to (Y;Y").

The following is useful to approximate a relative C' diffeomorphism
by relative definable C™ diffeomorphisms.

THEOREM 2.11. Let X and Y compact definable C" manifolds and
1 < r < oo. Suppose that X' and Y' are compact definable C" sub-
manifolds of X and Y, respectively, and that f : (X;X') — (Y;Y') is
a C! diffeomorphism. Then there exists a definable C" diffeomorphism
h: (X;X') — (Y;Y') as an approximation of f in the C' Whitney
topology.

Proof. Since X,Y are compact and by 1.1 [10] and 1.2 [10], we may
assume that X and Y are definable C" submanifolds of R” and R™,
respectively. :

Since f|X': X' = Y’ is a C! diffeomorphism and by the polynomial
approximation theorem and Proposition 2.4, there exists a definable C”
diffeomorphism f; : X’ — Y’ as an approximation of f|X’': X' — Y’
in the C! Whitney topology. Similarly, one can find a definable C"
diffeomorphism f5 : X — Y as an approximation of f : X — Y in the
C! Whitney topology.

By Proposition 2.4, there exists a definable C™ tubular neighborhood
(U,p) of X" in R™ (resp. (V,q) of Y in R™). Then U’ :=UNX is a
definable open neighborhood of X’ in X. Thus we have a definable C”
map f3 : U’ — Y’ with f3|X’ = f;. Take a definable open neighborhood
Uy of X’ in U’ such that the closure of U; in X is properly contained
in U’ and take a definable C” function A : X — R such that A = 1
on U; and its support lies in U’. Then we have a definable C" map
h: (X;X) — (YY), h(z) = q(Mz)f3(z) + (1 = A(@))f2(2)) as an
approximation of f : (X; X') — (Y;Y”) in the C' Whitney topology. If
our approximation is sufficiently close, then A is the required definable
C" diffeomorphism. O

One can define the definable C*® topology on the set of definable C*
maps between affine definable C* manifolds (see [9]). This definable C*
topology is different from the C° Whitney topology in general, but they
coincide if the domain manifold is compact.
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THEOREM 2.12 ([14], 4.11 [9]). Let 0 < s < r < oo. Then every
definable C* map between affine definable C™ manifolds is approximated
in the definable C*® topology by definable C™ maps.

Note that Theorem 2.12 are true in a more general setting (see 1.1

[8])-

ProposiTION 2.13 ([14], 4.10 [9]). Let X and Y be definable C*
submanifolds of R™ and 0 < s < co. If f : X — Y is a definable C*
diffeomorphism, then an approximation of f in the definable C® topology
is a definable C* diffeomorphism.

Proof of Theorem 1.3. Let X be a definable C*® manifold. Then by
Theorem 1.1 and since M is exponentially bounded, X is affine.

Assume that X is compact. By Theorem 2.9, X is C*® diffeomor-
phic to a compact C* manifold X’. Thus by Theorem 2.7, X' is C*°
diffeomorphic to a nonsingular algebraic set X”. In particular, X is C*
diffeomorphic to an affine definable C*° manifold X”. By Theorem 2.11,
X is definably C* diffeomorphic to X”. Thus in this case, X admits a
definable C" manifold structure.

Assume that X is not compact. By Theorem 2.5, X is definably
C? diffeomorphic to the interior of some compact affine definable C*
manifold Y with boundary Y. Thus by Theorem 2.6, Y admits a
definable C*® collar. Hence we have the double D of Y. By Theorem 1.1,
D is afhine and compact. Using Theorem 2.10, there exist a compact
C* manifold D' and a compact C*® submanifold Z of D’ such that
(D,dY) is C* diffeomorphic to (D', Z). By Theorem 2.8, one can find
a nonsingular algebraic set D" and a nonsingular algebraic subset Z’ of
D" such that (D', Z) is C* diffeomorphic to (D", Z’). In particular, D"
is an affine definable C*® manifold, Z’ is a definable C*° submanifold of
D" and (D, 8Y) is C*® diffeomorphic to (D", Z’). Using Theorem 2.11,
(D, dY) is definably C* diffeomorphic to (D", Z’). Thus X is definably
C? diffeomorphic to some union of connected components of D" — Z’.
Therefore X admits a definable C” manifold structure.

Uniqueness follows from Theorem 1.1, Theorem 2.12 and Proposition
2.13. d

Remark that the above proof shows that every definable C'* manifold
is definably C*® diffeomorphic to an affine definable C'°° manifold.
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