AFFINENESS OF DEFINABLE C^r MANIFOLDS AND ITS APPLICATIONS

Tomohiro Kawakami

ABSTRACT. Let $\mathcal M$ be an exponentially bounded o-minimal expansion of the standard structure $\mathcal R=(\mathbb R,+,\cdot,<)$ of the field of real numbers. We prove that if r is a non-negative integer, then every definable C^r manifold is affine. Let $f:X\to Y$ be a definable C^1 map between definable C^1 manifolds. We show that the set S of critical points of f and f(S) are definable and $\dim f(S)<\dim Y$. Moreover we prove that if $1< s< r<\infty$, then every definable C^s manifold admits a unique definable C^r manifold structure up to definable C^r diffeomorphism.

1. Introduction

Let \mathcal{M} denote an o-minimal expansion of the standard structure $\mathcal{R} = (\mathbb{R}, +, \cdot, <)$ of the field of real numbers. The term "definable" means "definable with parameters in \mathcal{M} ", and any manifold in this paper does not have boundary, unless otherwise stated. Several properties of definable C^r manifolds and definable C^r maps are studied in [9], [10], [8]. The Nash category coincides with the definable C^{∞} category based on \mathcal{R} [15], and definable C^r categories based on \mathcal{M} are generalizations of the C^r Nash category. General references on o-minimal structures are [3], [5], see also [14]. Further properties and constructions of them are studied in [4], [6], [12].

We say that \mathcal{M} is polynomially bounded if for every function $f: \mathbb{R} \to \mathbb{R}$ definable in \mathcal{M} , there exist a natural number k and a real number x_0 such that $|f(x)| \leq x^k$ for any $x > x_0$. Otherwise, \mathcal{M} is called exponential. One of typical examples of polynomially bounded structures is \mathcal{R} . By a result of \mathcal{C} . Miller [11], if \mathcal{M} is exponential,

Received January 25, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 14P20, 14P10, 57R35, 57R55, 58A05, 03C64

Key words and phrases: definable C^r manifolds, definable C^r maps, o-minimal, Sard's theorem, exponentially bounded.

then the exponential function $\mathbb{R} \to \mathbb{R}, x \mapsto e^x$ is definable. We call \mathcal{M} exponentially bounded if for every function $h: \mathbb{R} \to \mathbb{R}$ definable in \mathcal{M} , there exist a natural number l and a real number x_1 such that $|h(x)| \leq exp_l(x)$ for any $x > x_1$, where $exp_l(x)$ denotes the lth iterate of the exponential function, e.g. $exp_2(x) = e^{e^x}$. Note that the problem that every o-minimal expansion \mathcal{M} of \mathcal{R} is exponentially bounded is still open (e.g. [2]).

THEOREM 1.1. If \mathcal{M} is exponentially bounded and $0 \le r < \infty$, then every definable C^r manifold is affine.

Theorem 1.1 is a generalization of 1.1 [10] and an equivariant C^{∞} version of Theorem 1.1 is true if \mathcal{M} is exponential and the manifold is compact (see 1.2 [10]). If $\mathcal{M} = \mathcal{R}$ and $r = \infty$, then Theorem 1.1 is not true [13].

As applications of Theorem 1.1, we have the following two results.

Let A be a subset of an n-dimensional definable C^r manifold X with a definable C^r atlas $\{(U_i, \phi_i : U_i \to \mathbb{R}^n)\}_i$ and r > 0. We say that A has measure 0 in X if each $\phi_i(U_i \cap A) \subset \mathbb{R}^n$ has measure 0 (e.g. see P.68 [7]).

THEOREM 1.2. Let X and Y be definable C^1 manifolds and $f: X \to Y$ a definable C^1 map. If \mathcal{M} is exponentially bounded, then the set S of critical points of f and f(S) are definable and $\dim f(S) < \dim Y$. In particular, the measure of f(S) in Y is 0.

Without assuming that f is definable, there exists a C^1 map from \mathbb{R}^2 to \mathbb{R}^1 whose critical point set has positive measure [17]. Note that if $\dim X < \dim Y$ and f is a definable C^1 imbedding, then S = X, in particular, $\dim f(S) = \dim X$. Thus in Theorem 1.2, one cannot replace $\dim f(S) < \dim Y$ by $\dim f(S) < \min(\dim X, \dim Y)$.

THEOREM 1.3. If \mathcal{M} is exponentially bounded and $1 < s < r < \infty$, then every definable C^s manifold admits a unique definable C^r manifold structure up to definable C^r diffeomorphism.

By [13], there exists an uncountable family $\{X\}_{\lambda \in \Lambda}$ of Nash manifolds such that they are C^2 Nash diffeomorphic and that X_{λ} is not Nash diffeomorphic to X_{μ} for $\lambda \neq \mu$. Thus if $\mathcal{M} = \mathcal{R}$ and $r = \infty$, then Theorem 1.3 does not hold.

2. Proof of results

To prove Theorem 1.1, we need the following three results.

PROPOSITION 2.1 (3.2 [10]). Let X be an affine definable C^r manifold and $0 \le r < \infty$. Then X can be definably C^r imbeddable into some \mathbb{R}^n such that X is closed in \mathbb{R}^n . Moreover it is possible to definably C^r imbeddable into some \mathbb{R}^k such that X is bounded and $\overline{X} - X$ consists of at most one point, where \overline{X} denotes the closure of X in \mathbb{R}^k .

Let $e_n : \mathbb{R} \to \mathbb{R}, n \in \mathbb{N}$ be the function defined by

$$e_n(x) = \begin{cases} e^{-exp_{n-1}(1/x^2)}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

where $exp_0(x) = x$. Then elementary computations show the following proposition.

PROPOSITION 2.2. (1) For any polynomial function $P(x_1, \dots, x_n)$ in n variables,

$$\lim_{x \to 0} P\left(\frac{1}{x}, exp_1(\frac{1}{x^2}), \cdots, exp_{n-1}(\frac{1}{x^2})\right) e_n(x) = 0.$$

(2) Every e_n is a C^{∞} function.

Since \mathcal{M} is exponentially bounded, in the proof of C.5 [5], we can take $\phi(t) = te_n(t)$ for some $n \in \mathbb{N}$. Hence a similar proof of C.14 [5] proves the following proposition.

PROPOSITION 2.3 ([5]). Let A be a non-empty compact definable subset of \mathbb{R}^n and f, g two continuous definable functions on A such that $f^{-1}(0) \subset g^{-1}(0)$. If \mathcal{M} is exponentially bounded, then there exist a natural number k and a positive constant c such that $e_k(g) \leq c|f|$ on A.

Proof of Theorem 1.1. Let X be a definable C^r manifold. If dim X = 0, then X consists of finitely many points. Thus the result holds.

Assume that $m:=\dim X\geq 1$. Let $\{\phi_i:U_i\to\mathbb{R}^m\}_{i=1}^l$ be a definable C^r atlas of X. Then each $\phi_i(U_i)$ is a noncompact definable C^r submanifold of \mathbb{R}^m . Hence by Proposition 2.1, we have a definable C^r imbedding $\phi_i':\phi_i(U_i)\to\mathbb{R}^{m'}$ such that the image is bounded in $\mathbb{R}^{m'}$ and

$$\overline{\phi_i'\circ\phi_i(U_i)}-\phi_i'\circ\phi_i(U_i)$$

consists of one point, say 0. For a sufficiently large positive integer n, set

$$\eta:\mathbb{R}^{m'} o\mathbb{R}^{m'},\eta(x_1,\cdots,x_{m'})=\Big(\sum_{j=1}^{m'}e_n(x_j)x_1,\cdots,\sum_{j=1}^{m'}e_n(x_j)x_{m'}\Big),$$

$$q_i: U_i \to \mathbb{R}^{m'}, \eta \circ \phi_i' \circ \phi_i.$$

Then g_i is a definable C^r imbedding of U_i into $\mathbb{R}^{m'}$.

We now prove that the extension $\tilde{g}_i: X \to \mathbb{R}$ of g_i is defined by $\tilde{g}_i = 0$ on $X - U_i$ is of class definable C^r . It is sufficient to see this on each definable C^r coordinate neighborhood of X. Hence we may assume that X is open and bounded in \mathbb{R}^m . We only have to prove that for any sequence $\{a_t\}_{t=1}^{\infty}$ in U_i convergent to a point of $X - U_i$ and for any $\alpha \in (\mathbb{N} \cup \{0\})^m$ with $|\alpha| \leq r$, $\{D^{\alpha}g_i(a_t)\}_{t=1}^{\infty}$ converges to 0. On the other hand, $g_i = (\sum_{j=1}^{m'} e_n(\phi_{ij})\phi_{i1}, \cdots \sum_{j=1}^{m'} e_n(\phi_{ij})\phi_{im'})$, where $\phi_i' \circ \phi_i = (\phi_{i1}, \cdots, \phi_{im'})$. By the construction of ϕ_{ij} , $\{\phi_{ij}(a_t)\}_{t=1}^{\infty}$ converges to 0. Hence for any natural number k, $\{e_k(\phi_{ij}(a_t))\phi_{is}(a_t)\}_{t=1}^{\infty}$ converges to 0. Assume that if $|\alpha| \leq r-1$, then there exists some $K \in \mathbb{N}$ such that if $k \geq K$, then $D^{\alpha}(e_k(\phi_{ij}(a_t))\phi_{is}(a_t)) \to 0$ as $t \to \infty$. Let $D^{\alpha}(e_k(\phi_{ij}(x)))\phi_{is}(x) = F(x)e_k(\phi_{ij}(x))$. Then F is a definable $C^{r-|\alpha|}$ map on U.

Let

$$\psi = \max \left\{ 1, \left| \frac{\partial F}{\partial x_1} \right|, \left| \frac{\partial \phi_{ij}}{\partial x_1} \right| \right\}.$$

Define

$$\theta_{ij} = \begin{cases} \min\{|\phi_{ij}|, 1/\psi\} & \text{on } U_i \\ 0 & \text{on } X - U_i, \end{cases} \tilde{\phi_{ij}} = \begin{cases} \phi_{ij} & \text{on } U_i \\ 0 & \text{on } X - U_i. \end{cases}$$

Then θ_{ij} and $\tilde{\phi_{ij}}$ are continuous definable maps on X such that

$$X - U_i \subset (\theta_{ij})^{-1}(0) = (\tilde{\phi_{ij}})^{-1}(0).$$

Moreover by the construction of ϕ_{ij} , θ_{ij} and $\tilde{\phi_{ij}}$, θ_{ij} and $\tilde{\phi_{ij}}$ are extendable to continuous definable maps on \mathbb{R}^m . Hence by Proposition 2.3, there exist a positive integer a, a positive number b and a definable open neighborhood V of $X - U_i$ in X such that $e_a(\tilde{\phi_{ij}}) \leq b|\theta_{ij}|$ on V.

On the other hand, by the definition of θ_{ij} , $|\psi\theta_{ij}| \leq 1$ on U_i . Thus $|\psi|e_a(\tilde{\phi_{ij}}) \leq b$. Hence if $n \geq N := K + a + 1$, then

$$\begin{split} \frac{\partial}{\partial x_1}(D^{\alpha}(e_n(\phi_{ij})\phi_{is})) &= \frac{\partial}{\partial x_1}(Fe_n(\phi_{ij})) \\ &= \frac{\partial F}{\partial x_1}e_n(\phi_{ij}) + FR_1e_n(\phi_{ij}) \\ &= \frac{\partial F}{\partial x_1}e_n(\phi_{ij}) + (Fe_K(\phi_{ij}))(R_1\frac{e_n(\phi_{ij})}{e_K(\phi_{ij})}), \end{split}$$

where $R_1 = 2(\frac{\partial \phi_{ij}}{\partial x_1}/\phi_{ij}^3)exp_1(\frac{1}{\phi_{ij}^2})\cdots exp_{n-1}(\frac{1}{\phi_{ij}^2})$. Thus using the inductive hypothesis and Proposition 2.2,

$$\begin{split} & |\frac{\partial}{\partial x_{1}}(D^{\alpha}(e_{n}(\phi_{ij})\phi_{is}))| \\ & \leq |\frac{\partial F}{\partial x_{1}}|e_{n}(\phi_{ij}) + |Fe_{K}(\phi_{ij})||R_{1}|\frac{e_{n}(\phi_{ij})}{e_{K}(\phi_{ij})} \\ & \leq b\frac{e_{n}(\phi_{ij})}{e_{a}(\phi_{ij})} + |Fe_{K}(\phi_{ij})|\frac{2be_{n}(\phi_{ij})}{e_{a}(\phi_{ij})e_{K}(\phi_{ij})}\frac{exp_{1}(\frac{1}{\phi_{ij}^{2}})\cdots exp_{n-1}(\frac{1}{\phi_{ij}^{2}})}{|\phi_{ij}^{3}|} \to 0. \end{split}$$

By the above argument, replacing some larger N, if $|\alpha| \leq r$ and $n \geq N$, then $|D^{\alpha}(e_n(\phi_{ij})\phi_{is})| \to 0$. Therefore if $n \geq N$, then each \tilde{g}_i is a definable C^r map and the function $h_i: X \to \mathbb{R}$ defined by $h_i = \sqrt{(\tilde{g}_{i1})^2 + \cdots + (\tilde{g}_{im'})^2 + 1}$ is a definable C^r function with $h_i(X - U_i) = 1$, $(1 \leq i \leq l)$, where $\tilde{g}_i = (\tilde{g}_{i1}, \cdots, \tilde{g}_{im'})$, $(1 \leq i \leq l)$. It is easy to see that

$$(\tilde{g_1}, \cdots, \tilde{g_l}, h_1, \cdots, h_l) : X \to \mathbb{R}^{lm'} \times \mathbb{R}^l$$

is a definable C^r imbedding.

Proof of Theorem 1.2. Since \mathcal{M} is exponentially bounded and by Theorem 1.1, we may assume that X and Y are affine.

The first half of the theorem is obvious. We have only to prove the latter half. If $\dim X < \dim Y$, then $\dim f(S) \leq \dim f(X) \leq \dim X < \dim Y$. Thus we assume that $\dim Y < \dim X$.

By Sard's theorem (e.g. 3.1.3 [7]), if $r > \max(0, \dim X - \dim Y)$, then the set of critical values of every C^r map from X to Y has measure 0 in Y. Fix such an r.

By the definable C^r cell decomposition theorem (e.g. 7.3.3 [3]), there exists a finite partition $\{C_i\}_i$ of X into definable C^r cells such that each $f|C_i:C_i\to Y$ is a definable C^r map. Note that every C_i is a definable C^r submanifold of X and that C_i is open in X if $\dim C_i=\dim X$.

Let K_i denote the set of critical values of $f|C_i:C_i\to Y$ and let K=f(S). Then by Sard's theorem, each K_i has measure 0 in Y. Thus $\dim K_i<\dim Y$. Hence $\dim \bigcup_i K_i<\dim Y$.

We now prove $K \subset \bigcup_i K_i \cup_{\dim C_i < \dim Y} f(C_i)$. Let $y \in K$. Then there exists an $x \in X = \bigcup_i C_i$ such that y = f(x) and the rank of the Jacobian of f at x is smaller than $\dim Y$. Assume that $x \in C_i$. If $\dim C_i < \dim Y$, then $y = f(x) \in \bigcup_{\dim C_i < \dim Y} f(C_i)$. If $\dim C_i = \dim X$, then $y = f(x) \in K_i$ because C_i is open in X. Assume that $\dim Y \leq \dim C_i < \dim X$. Since C_i is a definable C^r submanifold of X.

there exists a definable C^r chart $\phi: U \to V \subset \mathbb{R}^k$ of X around x such that $\phi(x) = 0$ and $\phi(C_i \cap U) = V \cap \mathbb{R}^l$, where $k = \dim X, l = \dim C_i$ and $\mathbb{R}^l = \mathbb{R}^l \times 0 \subset \mathbb{R}^k$. The Jacobian A of $(f|C_i) \circ \phi^{-1}$ at $\phi(x)$ is a submatrix of the Jacobian B of $f \circ \phi^{-1}$ at $\phi(x)$. Then the determinant of every minor of B of degree $\dim Y$ at x is 0 because $\dim Y \leq \dim C_i < \dim X$. Hence the rank of A at $\phi(x)$ is smaller than $\dim Y$. Thus $y \in K_i$. Therefore $K \subset \bigcup_i K_i \bigcup_{\dim C_i < \dim Y} f(C_i)$.

Since $\dim \bigcup_i K_i < \dim Y$ and $\dim f(C_i) \leq \dim C_i$, $\dim K = \dim f(S) < \dim Y$.

To prove Theorem 1.3, we need the following several results.

PROPOSITION 2.4 (1.3 [8]). Let $1 \le r < \infty$. Then every definable C^r submanifold X of \mathbb{R}^n has a definable C^r tubular neighborhood (U, p) of X in \mathbb{R}^n , namely U is a definable open neighborhood of X in \mathbb{R}^n and $p: U \to X$ is a definable C^r map with $p|X = id_X$.

THEOREM 2.5 (1.2 [9]). If $0 < r < \infty$, then every noncompact affine definable C^r manifold is definably C^r diffeomorphic to the interior of some compact affine definable C^r manifold with boundary.

THEOREM 2.6 (5.8 [8]). If $2 \le r < \infty$, then every compact affine definable C^r manifold with boundary admits a definable C^r collar, namely there exists a definable C^r imbedding $\phi: \partial X \times [0,1] \to X$ such that $\phi|(\partial X \times \{0\})$ is the inclusion $\partial X \to X$, where the action on [0,1] is trivial.

Note that Proposition 2.4, Theorem 2.5 and 2.6 are true in more general settings (see 1.3 [8], 1.2 [9] and 5.8 [8]).

The following two results are algebraic realizations of compact C^{∞} manifolds.

THEOREM 2.7 ([16]). Every compact C^{∞} manifold is C^{∞} diffeomorphic to a nonsingular algebraic set.

THEOREM 2.8 ([1]). Let X' be a compact C^{∞} submanifold of a compact C^{∞} manifold X. Then there exist a nonsingular algebraic set Y and its nonsingular algebraic subset Y' such that (X; X') is C^{∞} diffeomorphic to (Y; Y').

The following is a result for raising differentiability of manifolds

THEOREM 2.9 (2.2.9 [7]). If $1 \le s < \infty$, then every C^s manifold admits a compatible C^{∞} manifold structure. In other words, for any C^s manifold (X, θ) , there exists a C^{∞} structure θ' on X such that $id_X : (X, \theta) \to (X, \theta')$ is a C^s diffeomorphism.

Some refinement of the proof of 2.2.9 [7] proves the following relative version of it.

THEOREM 2.10. Let X' be a compact C^s submanifold of a compact C^s manifold X and $1 \leq s < \infty$. Then there exist a compact C^∞ manifold Y and its compact C^∞ submanifold Y' such that (X; X') is C^s diffeomorphic to (Y; Y').

The following is useful to approximate a relative C^1 diffeomorphism by relative definable C^r diffeomorphisms.

THEOREM 2.11. Let X and Y compact definable C^r manifolds and $1 \leq r < \infty$. Suppose that X' and Y' are compact definable C^r submanifolds of X and Y, respectively, and that $f:(X;X') \to (Y;Y')$ is a C^1 diffeomorphism. Then there exists a definable C^r diffeomorphism $h:(X;X') \to (Y;Y')$ as an approximation of f in the C^1 Whitney topology.

Proof. Since X, Y are compact and by 1.1 [10] and 1.2 [10], we may assume that X and Y are definable C^r submanifolds of \mathbb{R}^n and \mathbb{R}^m , respectively.

Since $f|X':X'\to Y'$ is a C^1 diffeomorphism and by the polynomial approximation theorem and Proposition 2.4, there exists a definable C^r diffeomorphism $f_1:X'\to Y'$ as an approximation of $f|X':X'\to Y'$ in the C^1 Whitney topology. Similarly, one can find a definable C^r diffeomorphism $f_2:X\to Y$ as an approximation of $f:X\to Y$ in the C^1 Whitney topology.

By Proposition 2.4, there exists a definable C^r tubular neighborhood (U,p) of X' in \mathbb{R}^n (resp. (V,q) of Y in \mathbb{R}^m). Then $U':=U\cap X$ is a definable open neighborhood of X' in X. Thus we have a definable C^r map $f_3:U'\to Y'$ with $f_3|X'=f_1$. Take a definable open neighborhood U_1 of X' in U' such that the closure of U_1 in X is properly contained in U' and take a definable C^r function $\lambda:X\to\mathbb{R}$ such that $\lambda=1$ on U_1 and its support lies in U'. Then we have a definable C^r map $h:(X;X')\to (Y;Y'), h(x)=q(\lambda(x)f_3(x)+(1-\lambda(x))f_2(x))$ as an approximation of $f:(X;X')\to (Y;Y')$ in the C^1 Whitney topology. If our approximation is sufficiently close, then h is the required definable C^r diffeomorphism.

One can define the definable C^s topology on the set of definable C^s maps between affine definable C^s manifolds (see [9]). This definable C^s topology is different from the C^s Whitney topology in general, but they coincide if the domain manifold is compact.

THEOREM 2.12 ([14], 4.11 [9]). Let $0 \le s < r < \infty$. Then every definable C^s map between affine definable C^r manifolds is approximated in the definable C^s topology by definable C^r maps.

Note that Theorem 2.12 are true in a more general setting (see 1.1 [8]).

PROPOSITION 2.13 ([14], 4.10 [9]). Let X and Y be definable C^s submanifolds of \mathbb{R}^n and $0 < s < \infty$. If $f: X \to Y$ is a definable C^s diffeomorphism, then an approximation of f in the definable C^s topology is a definable C^s diffeomorphism.

Proof of Theorem 1.3. Let X be a definable C^s manifold. Then by Theorem 1.1 and since \mathcal{M} is exponentially bounded, X is affine.

Assume that X is compact. By Theorem 2.9, X is C^s diffeomorphic to a compact C^∞ manifold X'. Thus by Theorem 2.7, X' is C^∞ diffeomorphic to a nonsingular algebraic set X''. In particular, X is C^s diffeomorphic to an affine definable C^∞ manifold X''. By Theorem 2.11, X is definably C^s diffeomorphic to X''. Thus in this case, X admits a definable C^r manifold structure.

Assume that X is not compact. By Theorem 2.5, X is definably C^s diffeomorphic to the interior of some compact affine definable C^s manifold Y with boundary ∂Y . Thus by Theorem 2.6, Y admits a definable C^s collar. Hence we have the double D of Y. By Theorem 1.1, D is affine and compact. Using Theorem 2.10, there exist a compact C^∞ manifold D' and a compact C^∞ submanifold Z of D' such that $(D,\partial Y)$ is C^s diffeomorphic to (D',Z). By Theorem 2.8, one can find a nonsingular algebraic set D'' and a nonsingular algebraic subset Z' of D'' such that (D',Z) is C^∞ diffeomorphic to (D'',Z'). In particular, D'' is an affine definable C^∞ manifold, Z' is a definable C^∞ submanifold of D'' and $(D,\partial Y)$ is C^s diffeomorphic to (D'',Z'). Using Theorem 2.11, $(D,\partial Y)$ is definably C^s diffeomorphic to (D'',Z'). Thus X is definably C^s diffeomorphic to some union of connected components of D'' - Z'. Therefore X admits a definable C^r manifold structure.

Uniqueness follows from Theorem 1.1, Theorem 2.12 and Proposition 2.13. \Box

Remark that the above proof shows that every definable C^s manifold is definably C^s diffeomorphic to an affine definable C^{∞} manifold.

References

- S. Akbulut and H. King, A relative Nash theorem, Trans. Amer. Math. Soc. 267 (1981), 465–481.
- [2] L. van den Dries, O-minimal structures and real analytic geometry, Current developments in Math. (1998), 105–152.
- [3] _____, Tame topology and o-minimal structures, Lecture notes series 248, London Math. Soc. Cambridge Univ. Press (1998).
- [4] L. van den Dries, A. Macintyre, and D. Marker, The elementary theory of restricted analytic field with exponentiation, Ann. Math. 140 (1994), 183-205.
- [5] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497–540.
- [6] L. van den Dries and P. Speissegger, The real field with convergent generalized power series, Trans. Amer. Math. Soc. 350, (1998), 4377-4421.
- [7] M. W. Hirsch, Differential topology, Springer-Verlag, New York-Heidelberg, 1976.
- [8] T. Kawakami, Equivariant definable C^r approximation theorem, definable C^rG triviality of G invariant definable C^r functions and compactifications, preprint.
- [9] _____, Equivariant differential topology in an o-minimal expansion of the field of real numbers, Topology Appl. 123 (2002), no. 2, 323-349.
- [10] _____, Imbeddings of manifolds defined on an o-minimal structure on (R, +, ·, <), Bull. Korean Math. Soc. **36** (1999), no. 1, 183–201.
- [11] C. Miller, Exponentiation is hard to avoid, Proc. Amer. Math. Soc. 122 (1994), 257-259.
- [12] Y. Peterzil, A. Pillay and S. Starchenko, *Definably simple groups in o-minimal structures*, Trans. Amer. Math. Soc. **352** (2000), 4397–4419.
- [13] M. Shiota, Abstract Nash manifolds, Proc. Amer. Math. Soc. 96 (1986), 155-162.
- [14] _____, Geometry of subanalyitc and semialgebraic sets, Progress in Math. 150 (1997), Birkhäuser.
- [15] A. Tarski, A decision method for elementary algebra and geometry, 2nd edition. revised, Berkeley and Los Angeles, 1951.
- [16] A. Tognoli, Su una congettura di Nash, Annali Sc. Norm. Sup. Pisa 27 (1973), 167–185.
- [17] H. Whitney, A functions not constant on a connected set of critical points, Duke Math. J. 1 (1935), 514-517.

Department of Mathematics, Faculty of Education, Wakayama University, Sakaedani Wakayama 640-8510, Japan

E-mail: kawa@center.wakayama-u.ac.jp