(WEAK) IMPLICATIVE HYPER K-IDEALS

A. Borumand Saeid, R. A. Borzooei, and M. M. Zahedi

ABSTRACT. In this note first we define the notions of weak implicative and implicative hyper K-ideals of a hyper K-algebra H. Then we state and prove some theorems which determine the relationship between these notions and (weak) hyper K-ideals. Also we give some relations between these notions and all types of positive implicative hyper K-ideals. Finally we classify the implicative hyper K-ideals of a hyper K-algebra of order 3.

1. Introduction

The hyperalgebraic structure theory was introduced by F. Marty [9] in 1934. Imai and Iseki [5] in 1966 introduced the notion of a BCK-algebra. Recently [2, 3, 12] Borzooei, Jun and Zahedi et.al. applied the hyperstructure to BCK-algebras and introduced the concept of hyper K-algebra which is a generalization of BCK-algebra. Now, in this note we define the notions of (weak) implicative hyper K-ideals, then we obtain some related results which have been mentioned in the abstract.

2. Preliminaries

DEFINITION 2.1. [2] Let H be a nonempty set and " \circ " be a hyperoperation on H, that is " \circ " is a function from $H \times H$ to $\mathcal{P}^*(H) = \mathcal{P}(H) \setminus \{\emptyset\}$. Then H is called a *hyper K-algebra* if it contains a constant "0" and satisfies the following axioms:

(HK1)
$$(x \circ z) \circ (y \circ z) < x \circ y$$

$$(HK2) (x \circ y) \circ z = (x \circ z) \circ y$$

(HK4)
$$x < y, y < x \Rightarrow x = y$$

Received March 8, 2002.

2000 Mathematics Subject Classification: 06F35, 03G25.

Key words and phrases: hyper K-algebra, hyper K-ideal, (weak) implicative hyper K-ideal.

⁽HK3) x < x

(HK5) 0 < x

for all $x, y, z \in H$, where x < y is defined by $0 \in x \circ y$ and for every $A, B \subseteq H$, A < B is defined by $\exists a \in A, \exists b \in B$ such that a < b.

Note that if $A,B\subseteq H$, then by $A\circ B$ we mean the subset $\bigcup_{\substack{a\in A\\b\in B}}a\circ b$ of H.

EXAMPLE 2.2. [2] Define the hyperoperation " \circ " on $H = [0, +\infty)$ as follows:

$$x \circ y = \begin{cases} [0, x] & \text{if } x \leq y \\ (0, y] & \text{if } x > y \neq 0 \\ \{x\} & \text{if } y = 0 \end{cases}$$

for all $x, y \in H$. Then $(H, \circ, 0)$ is a hyper K-algebra.

THEOREM 2.3. [2] Let $(H, \circ, 0)$ be a hyper K-algebra. Then for all $x, y, z \in H$ and for all nonempty subsets A, B and C of H the following hold:

(i) $x \circ y < z \Leftrightarrow x \circ z < y$,

(ii) $(x \circ z) \circ (x \circ y) < y \circ z$,

(iii) $x \circ (x \circ y) < y$,

(iv) $x \circ y < x$,

(v) $A \subseteq B$ implies A < B,

(vi) $x \in x \circ 0$,

(vii) $(A \circ C) \circ (A \circ B) < B \circ C$,

(viii) $(A \circ C) \circ (B \circ C) < A \circ B$,

(ix) $A \circ B < C \Leftrightarrow A \circ C < B$.

DEFINITION 2.4. [2] Let I be a nonempty subset of a hyper K-algebra $(H, \circ, 0)$ and $0 \in I$. Then,

- (i) I is called a weak hyper K-ideal of H if $x \circ y \subseteq I$ and $y \in I$ imply that $x \in I$ for all $x, y \in H$.
- (ii) I is called a hyper K-ideal of H if $x \circ y < I$ and $y \in I$ imply that $x \in I$ for all $x, y \in H$.

THEOREM 2.5. [2] Any hyper K-ideal of a hyper K-algebra H, is a weak hyper K-ideal.

DEFINITION 2.6. [1] Let I be a nonempty subset of a hyper K-algebra $(H, \circ, 0)$ such that $0 \in I$. Then I is called a *positive implicative hyper* K-ideal of

(i) type 1, if for all $x, y, z \in H$, $(x \circ y) \circ z \subseteq I$ and $y \circ z \subseteq I$ imply that

 $x \circ z \subseteq I$,

- (ii) type 2, if for all $x, y, z \in H$, $(x \circ y) \circ z < I$ and $y \circ z \subseteq I$ imply that $x \circ z \subseteq I$,
- (iii) type 3, if for all $x, y, z \in H$, $(x \circ y) \circ z < I$ and $y \circ z < I$ imply that $x \circ z \subseteq I$,
- (iv) type 4, if for all $x, y, z \in H$, $(x \circ y) \circ z \subseteq I$ and $y \circ z < I$ imply that $x \circ z \subseteq I$,
- (v) type 5, if for all $x, y, z \in H$, $(x \circ y) \circ z \subseteq I$ and $y \circ z \subseteq I$ imply that $x \circ z < I$,
- (vi) type 6, if for all $x, y, z \in H$, $(x \circ y) \circ z < I$ and $y \circ z < I$ imply that $x \circ z < I$,
- (vii) type 7, if for all $x, y, z \in H$, $(x \circ y) \circ z \subseteq I$ and $y \circ z < I$ imply that $x \circ z < I$,
- (viii) type 8, if for all $x, y, z \in H$, $(x \circ y) \circ z < I$ and $y \circ z \subseteq I$ imply that $x \circ z < I$.

DEFINITION 2.7. [3] Let I be a nonempty subset of H. Then we say that I satisfies the additive condition if for all $x, y \in H$, x < y and $y \in I$ imply that $x \in I$.

DEFINITION 2.8. [1] Let H be a hyper K-algebra. An element $a \in H$ is called a *left* (resp. right) scalar if $|a \circ x| = 1$ (resp. $|x \circ a| = 1$) for all $x \in H$. If $a \in H$ is both left and right scalar, we say that a is an scalar element.

DEFINITION 2.9. [1] We say that the hyper K-algebra H satisfies the transitive condition if for all $x, y, z \in H$, x < y and y < z imply that x < z.

3. Some results on hyper K-ideals

From now on H is a hyper K-algebra, unless otherwise is stated.

PROPOSITION 3.1. Let I be a hyper K-ideal of H, and $A, B \subseteq H$. If $A \circ B < I$ and $B \subseteq I$, then A < I.

Proof. We have $A \circ B = \bigcup_{\substack{a \in A \\ b \in B}} a \circ b$ and $A \circ B < I$. Thus there exist

 $t \in a \circ b$ for some $a \in A$, $b \in B$ and $s \in I$ such that t < s. Hence $a \circ b < I$. Since I is a hyper K-ideal and $b \in I$ we conclude that $a \in I$, thus A < I.

REMARK 3.2. (i) In the above proposition it is not necessary that $A \subseteq I$. To show this, let $H = \{0, 1, 2\}$. Then the following table shows a hyper K-algebra structure on H.

Now, $I = \{0, 1\}$ is a hyper K-ideal of H, $\{1, 2\} \circ \{0, 1\} = \{0, 1, 2\} < I$ and $\{0, 1\} \subseteq I$, but $\{1, 2\} \not\subseteq I$.

(ii) If in Proposition 3.1, we use B < I instead of $B \subseteq I$, then the result does not hold. Because consider $H = \{0, 1, 2\}$, then the following table shows a hyper K-algebra structure on H.

$$\begin{array}{c|ccccc} \circ & 0 & 1 & 2 \\ \hline 0 & \{0\} & \{0\} & \{0\} \\ 1 & \{1\} & \{0,1,2\} & \{2\} \\ 2 & \{2\} & \{0,1,2\} & \{0,1\} \\ \end{array}$$

Let $I = \{0\}$, clearly I is a hyper K-ideal. We have $\{1\} \circ \{0,1,2\} < I$ and $\{0,1,2\} < I$, but $\{1\} \not < I$.

LEMMA 3.3. Let I be a weak hyper K-ideal of H. If for all $A, B \subseteq H$, $A \circ B \subseteq I$ and $B \subseteq I$, then $A \subseteq I$.

Proof. For all $a \in A$, $b \in B$ we have $a \circ b \subseteq A \circ B \subseteq I$ and $b \in I$. Since I is a weak hyper K-ideal, we get that $a \in I$, thus $A \subseteq I$.

REMARK 3.4. In the above lemma the condition $B \subseteq I$ can not be replaced by B < I. Because let $H = \{0, 1, 2\}$. Then the following table

shows a hyper K-algebra structure on H.

0	0	1	2
0	{0}	{0}	{0}
1	{1}	$\{0, 1, 2\}$	$\{2\}$
2	$\{2\}$	$\{0,1,2\}$	$\{0, 1\}$

Now, $I = \{0, 1\}$ is a weak hyper K-ideal of H, $2 \circ (1 \circ 2) \subseteq I$ and $1 \circ 2 < I$, while $\{2\} \not\subseteq I$.

DEFINITION 3.5. We say that H satisfies the strong transitive condition if for all $A, B, C \subseteq H$, A < B and B < C imply that A < C.

COROLLARY 3.6. Let H satisfies the strong transitive condition. Then it satisfies the transitive condition.

Proof. It is easy.
$$\Box$$

The following example shows that the converse of the above corollary is not true in general. To show this let $H = \{0, 1, 2\}$. Then the following table shows a hyper K-algebra structure on H.

0	0	1	2
0	{0}	{0}	$\overline{\{0\}}$
1	{1}	$\{0\}$	{1}
2	{2}	$\{2\}$	$\{0, 1\}$

It is easy to check that H satisfies the transitive condition, while it does not satisfy the strong transitive condition. Because $\{2\} < \{1,2\}$ and $\{1,2\} < \{1\}$, but $\{2\} \not< \{1\}$.

PROPOSITION 3.7. Let H satisfies the strong transitive condition. If I is a hyper K-ideal of H and $A, B \subseteq H$, $A \circ B < I$ and B < I, then A < I.

Proof. Let $A \circ B < I$. Then by Theorem 2.3 (ix) we have $A \circ I < B$, and B < I. Since H satisfies the strong transitive condition we get that $A \circ I < I$. Now by Proposition 3.1 we have A < I.

4. Implicative hyper K-ideal

DEFINITION 4.1. A nonempty subset I of H is called a weak implicative hyper K-ideal if it satisfies:

- (i) $0 \in I$
- (ii) $(x \circ z) \circ (y \circ x) \subseteq I$ and $z \in I$ imply $x \in I$, for all $x, y, z \in H$.

EXAMPLE 4.2. Let $H = \{0, 1, 2\}$. Then the following table shows a hyper K-algebra structure on H.

_ 0	0	1	2
0	{0}	$\overline{\{0\}}$	{0}
1	{1}	$\{0, 1\}$	$\{1\}$
2	$\{1, 2\}$	$\{0, 1\}$	$\{0, 1\}$

Then $I = \{0, 2\}$ is a weak implicative hyper K-ideal of H.

DEFINITION 4.3. A nonempty subset I of H is called an *implicative* hyper K-ideal if it satisfies:

- (i) $0 \in I$
- (ii) $(x \circ z) \circ (y \circ x) < I$ and $z \in I$ imply $x \in I$, for all $x, y, z \in H$.

EXAMPLE 4.4. Let $H = \{0, 1, 2\}$. The following table shows a hyper K-algebra structure on H.

$$\begin{array}{c|ccccc} \circ & 0 & 1 & 2 \\ \hline 0 & \{0\} & \{0\} & \{0\} \\ 1 & \{1\} & \{0,2\} & \{1\} \\ 2 & \{2\} & \{0,2\} & \{0,2\} \end{array}$$

Then $I = \{0, 2\}$ is an implicative hyper K-ideal, while $I = \{0, 1\}$ is not an implicative hyper K-ideal, because $(2 \circ 0) \circ (1 \circ 2) < I$, and $0 \in I$ but $2 \notin I$.

PROPOSITION 4.5. Each implicative hyper K-ideal of H is a weak implicative.

Proof. Let I be an implicative hyper K-ideal and $(x \circ z) \circ (y \circ x) \subseteq I$, $z \in I$. Then by Theorem 2.3 (v) we have $(x \circ z) \circ (y \circ x) < I$, thus $x \in I$. So I is a weak implicative hyper K-ideal.

The following example shows that the converse of the above proposition is not correct in general. Consider $H = \{0, 1, 2\}$. The following

table shows a hyper K-algebra structure on H.

0	0	1	2
0	{0}	{0}	{0}
1	$\{1\}$	{0}	{0}
2	$\{2\}$	$\{1, 2\}$	$\{0, 1, 2\}$

Then $I = \{0, 1\}$ is a weak implicative hyper K-ideal, while it is not an implicative hyper K-ideal, because $(2 \circ 0) \circ (1 \circ 2) < I$, $0 \in I$ but $2 \notin I$.

Theorem 4.6. Every implicative hyper K-ideal of H is a hyper K-ideal.

Proof. Let I be an implicative hyper K-ideal of H, $x \circ y < I$ and $y \in I$. Then there exist $t \in x \circ y$ and $z \in I$ such that t < z. We have $t \in t \circ 0 \subseteq (x \circ y) \circ (0 \circ x)$. Thus $(x \circ y) \circ (0 \circ x) < I$ and $y \in I$, therefore $x \in I$.

The following example shows that the converse of the above theorem is not correct in general. Let $H = \{0, 1, 2\}$. Then the following table shows a hyper K-algebra structure on H.

$$\begin{array}{c|cccc} \circ & 0 & 1 & 2 \\ \hline 0 & \{0\} & \{0\} & \{0\} \\ 1 & \{1\} & \{0,2\} & \{1\} \\ 2 & \{2\} & \{0,1,2\} & \{0,2\} \\ \end{array}$$

Now, we can see that $I = \{0, 2\}$ is a hyper K-ideal, while it is not an implicative hyper K-ideal, since $(1 \circ 0) \circ (2 \circ 1) = \{0, 1, 2\} < I$ and $0 \in I$, but $1 \notin I$.

REMARK 4.7. (i) In general, a weak implicative hyper K-ideal does not need to be a weak hyper K-ideal. To show this, consider $H = \{0,1,2\}$, then the following table shows a hyper K-algebra structure on H.

We can check that $I = \{0, 1\}$ is a weak implicative hyper K-ideal, while it is not a weak hyper K-ideal, because $2 \circ 1 \subseteq I$ and $1 \in I$, but $2 \notin I$.

(ii) In general, a weak hyper K-ideal does not need to be a weak implicative hyper K-ideal. For this consider the hyper K-algebra H of Remark 3.4. Then $I = \{0,1\}$ is a weak hyper K-ideal, while it is not a

weak implicative hyper K-ideal, since $(2 \circ 0) \circ (1 \circ 2) \subseteq I$, and $0 \in I$, but $2 \notin I$.

THEOREM 4.8. Let I be a weak hyper K-ideal of H. Then the following statements hold:

- (i) If for all $x, y, z \in H$, $x \circ (y \circ x) \subseteq I$ implies $x \in I$, then I is a weak implicative hyper K-ideal.
- (ii) Let $0 \in H$ be a right scalar element and I be a weak implicative hyper K-ideal. Then for all $x, y \in H$, $x \circ (y \circ x) \subseteq I$, implies that $x \in I$.
- *Proof.* (i) Let I be a weak hyper K-ideal, $(x \circ z) \circ (y \circ x) \subseteq I$ and $z \in I$. Then $(x \circ (y \circ x)) \circ z \subseteq I$. By Lemma 3.3, we have $x \circ (y \circ x) \subseteq I$. Now by hypothesis $x \in I$. So I is a weak implicative hyper K-ideal.
- (ii) Let I be a weak implicative hyper K-ideal, $x \circ (y \circ x) \subseteq I$ and $0 \in H$ is a right scalar element. We have $(x \circ 0) \circ (y \circ x) = x \circ (y \circ x) \subseteq I$ and $0 \in I$, thus $x \in I$.

The following theorem shows that if we restrict to a hyper K-algebra of order 3, then we can omit the condition " $0 \in H$ be a right scalar element", in the above theorem.

THEOREM 4.9. Let $H = \{0, 1, 2\}$ be a hyper K-algebra of order 3, and I be a proper weak hyper K-ideal of H. Then I is a weak implicative hyper K-ideal if and only if for all $x, y \in H$, $x \circ (y \circ x) \subseteq I$ implies $x \in I$.

Proof. Let $I = \{0, 1\}$ be a proper weak hyper K-ideal and also a weak implicative hyper K-ideal of H. If $x \circ (y \circ x) \subseteq I$, for arbitrary elements $x, y \in H$, then we show that $x \in I$. If x = 0 or 1, then it is done. So let x = 2, therefore

$$(1) 2 \circ (y \circ 2) \subseteq I.$$

We know that $0 \notin 2 \circ 0$ and $2 \in 2 \circ 0$. Thus $2 \circ 0 = \{2\}$ or $2 \circ 0 = \{1, 2\}$. If $2 \circ 0 = \{2\}$, then $(2 \circ 0) \circ (y \circ 2) = 2 \circ (y \circ 2) \subseteq I$, by (1). Since $0 \in I$ and I is a weak implicative hyper K-ideal, we get that $2 \in I$, which is a contradiction.

If $2 \circ 0 = \{1, 2\}$, then we consider the following different cases.

- (i) If y=0, then $2\in 2\circ 0\subseteq 2\circ (0\circ 2)\subseteq I$, by (1), which is a contradiction.
- (ii) If y = 1 and 1 < 2, then $0 \in 1 \circ 2$. Thus $2 \in 2 \circ 0 \subseteq 2 \circ (1 \circ 2) \subseteq I$, by (1). Which is a contradiction.

If y=1 and $1 \not< 2$, then $1 \circ 2 = \{1\}$ or $\{1,2\}$ or $\{2\}$. So we must discuss on the above different cases:

- (a) If $1 \circ 2 = \{1\}$, then $2 \circ 1 = 2 \circ (1 \circ 2) \subseteq I$, by (1). Since $1 \in I$ and I is a weak hyper K-ideal, we conclude that $2 \in I$, which is a contradiction.
- (b) If $1 \circ 2 = \{1, 2\}$, then $(2 \circ 1) \cup (2 \circ 2) = 2 \circ \{1, 2\} = 2 \circ (1 \circ 2) \subseteq I$, by (1). Hence $2 \circ 1 \subseteq I$. Therefore $2 \in I$, which is a contradiction.
- (c) If $1 \circ 2 = \{2\}$, then we claim that $1 \circ 0 = \{1\}$. Suppose $1 \circ 0 \neq \{1\}$. Since $1 \in 1 \circ 0$ and $0 \notin 1 \circ 0$, we must have $1 \circ 0 = \{1, 2\}$. Then $0 \in 2 \circ 2 \subseteq \{2\} \cup 2 \circ 2 = 1 \circ 2 \cup 2 \circ 2 = \{1, 2\} \circ 2 = (1 \circ 0) \circ 2$, so

$$(2) 0 \in (1 \circ 0) \circ 2.$$

On the other hand $(1 \circ 0) \circ 2 = (1 \circ 2) \circ 0 = 2 \circ 0$. Since $0 \notin 2 \circ 0$, we get that $0 \notin (1 \circ 0) \circ 2$, which is a contradiction by (2). Thus we must have $1 \circ 0 = \{1\}$. Therefore

$$(1 \circ 2) \circ 0 = 2 \circ 0 = \{1, 2\}$$

and

$$(1 \circ 0) \circ 2 = 1 \circ 2 = \{2\}.$$

Since $(1 \circ 2) \circ 0 = (1 \circ 0) \circ 2$. So (3), (4) given a contradiction. Thus y = 1 does not happen.

(iii) Let y = 2. Then $2 \in 2 \circ 0 \subseteq 2 \circ (2 \circ 2) \subseteq I$, by (1). Which is a contradiction. Therefore the above argument shows that $x \neq 2$, i.e., $x \in I$. Finally by considering Theorem 4.8, the proof of the converse is obvious.

DEFINITION 4.10. [11] Let $H = \{0, 1, 2\}$ be a hyper K-algebra of order 3. We say that H satisfies the simple condition if $1 \nleq 2$ and $2 \nleq 1$.

THEOREM 4.11. Let $H = \{0, 1, 2\}$ be a hyper K-algebra of order 3, that satisfies the simple condition, and let $\{0\} \neq I \subset H$. Then I is a weak hyper K-ideal of H if and only if I is a weak implicative K-ideal of H.

Proof. Let I be a weak hyper K-ideal of H. By hypothesis we have $I = \{0,1\}$ or $\{0,2\}$. Let $I = \{0,1\}$. By Theorem 4.9 it is enough to show that if $x \circ (y \circ x) \subseteq I$, for any two arbitrary elements x, y of H, then $x \in I$. So let $x \circ (y \circ x) \subseteq I$. If x = 0 or 1, then it is done. Thus let x = 2. Consider the following different cases:

Case (1). If y = 0, then $2 \in 2 \circ 0 \subseteq 2 \circ (2 \circ 0) \subseteq I$ and hence $2 \in I$, which is a contradiction.

- Case (2). If y = 1, since H satisfies the simple condition then $1 \not< 2$ and $0 \not\in 1 \circ 2$. Hence $1 \circ 2 = \{1\}, \{2\}$ or $\{1, 2\}$.
- (i) If $1 \circ 2 = \{1\}$, then $2 \circ 1 = 2 \circ (1 \circ 2) \subseteq I$. Since I is a weak hyper K-ideal and $1 \in I$ then we get that $2 \in I$, which is a contradiction.
 - (ii) The case $1 \circ 2 = \{2\}$ does not happen, by Theorem 3.17 of [11].
- (iii) If $1 \circ 2 = \{1, 2\}$, then $(2 \circ 1) \cup (2 \circ 2) = 2 \circ \{1, 2\} = 2 \circ (1 \circ 2) \subseteq I$. Thus $2 \circ 1 \subseteq I$. Now $1 \in I$ implies that $2 \in I$, which is a contradiction. Case (3). If y = 2, then $2 \in 2 \circ 0 \subseteq 2 \circ (2 \circ 2) \subseteq I$. Hence $2 \in I$, which is a contradiction.

Thus $x \neq 2$. Hence x is in I. Note that the proof of the case $I = \{0, 2\}$ is similar as above.

Conversely, let I be a weak implicative hyper K-ideal of H. Without loss of generality we assume that $I = \{0, 1\}$. Let $x \circ y \subseteq I$ and $y \in I$. If x = 0 or 1, then $x \in I$. So let x = 2. We consider the following cases:

- Case (1). The case y = 0 does not happen, because $2 = 2 \circ 0 \not\subseteq I$.
- Case (2). If y=1, since $2 \not< 1$, then $0 \not\in 2 \circ 1$. Hence $2 \circ 1 = \{1\}$, $\{2\}$ or $\{1,2\}$. Since H satisfies the simple condition, then by Theorem 3.17 of [11] $2 \circ 1 \neq \{1\}$. So the cases $2 \circ 1 = \{2\}$ or $\{1,2\}$ do not happen, since $2 \circ 1 \not\subseteq I$.
- Case (3). The case of y = 2 does not happen, because $2 \notin I$.

Consequently $x \neq 2$, hence $x \circ y \subseteq I$ and $y \in I$ imply that $x \in I$, for all $x, y \in H$. This shows that I is a weak implicative hyper K-ideal. Note that the proof of the case $I = \{0, 2\}$ is similar as above.

THEOREM 4.12. Let I be a hyper K-ideal of H. Then I is an implicative hyper K-ideal if and only if

(5) $x \circ (y \circ x) < I$ implies that $x \in I$, for any $x, y \in H$.

Proof. Let I satisfies in (5) and $(x \circ z) \circ (y \circ x) < I$, $z \in I$. Then by Proposition 3.1 we have $x \circ (y \circ x) < I$. So by (5) we get that $x \in I$. Therefore I is an implicative hyper K-ideal.

Conversely, let I be an implicative hyper K-ideal, and $x \circ (y \circ x) < I$. Since $x \circ (y \circ x) \subseteq (x \circ 0) \circ (y \circ x)$, we conclude that $(x \circ 0) \circ (y \circ x) < I$. Thus $0 \in I$ implies that $x \in I$.

THEOREM 4.13. Let H satisfies the strong transitive condition. If I is an implicative hyper K-ideal of H, then I is a positive implicative hyper K-ideal of types 1-8.

Proof. By considering Theorem 3.5 of [1], it is enough to show that I is a positive implicative hyper K-ideal of type 3. Let $(x \circ y) \circ z < I$,

and $y \circ z < I$, we must show that $x \circ z \subseteq I$. Let $t \in x \circ z$. Then by (HK1) we have

$$(t \circ z) \circ (y \circ z) < t \circ y \subseteq (x \circ z) \circ y = (x \circ y) \circ z < I.$$

Since H satisfies the strong transitive condition, then $(t \circ z) \circ (y \circ z) < I$. Since $y \circ z < I$ by Proposition 3.7, we conclude that $t \circ z < I$. Now, by Theorem 2.3 (ii) we have $(x \circ z) \circ (x \circ t) < t \circ z$, thus by hypothesis we get that $(x \circ z) \circ (x \circ t) < I$. Since $(x \circ z) \circ (x \circ t) \subseteq (x \circ z) \circ (x \circ (x \circ z))$, we conclude that $(x \circ z) \circ (x \circ (x \circ z)) < I$. But for all $t \in x \circ z$ we have $t \circ (x \circ t) \subseteq (x \circ z) \circ (x \circ (x \circ z))$, so by hypothesis $t \circ (x \circ t) < I$. Thus by Theorem 4.12, $t \in I$, and hence $x \circ z \subseteq I$.

Remark 4.14. In Theorem 4.13 the condition strong transitivity of H is essential. Because, let $H = \{0, 1, 2\}$. Then the following table shows a hyper K-algebra structure on H.

0	0	1	2
0	{0}	{0}	$-\{0\}$
1	{1}	$\{0\}$	$\{1\}$
2	$\{1,2\}$	{0}	$\{0,1\}$

Now H does not satisfy the strong transitive condition, because $\{1\} < \{1,2\} < \{2\}$ and $\{1\} \not < \{2\}$. Clearly $I = \{0,2\}$ is an implicative hyper K-ideal of H, but it is not a positive implicative hyper K-ideal of type 2 or 3. Because $(2 \circ 0) \circ 0 < I$ and $0 \circ 0 \subseteq I$, but $2 \circ 0 \not\subseteq I$.

THEOREM 4.15. Let $H = \{0, 1, 2\}$ be a hyper K-algebra of order 3, that satisfies the simple condition, and $\{0\} \neq I \subset H$. Then I is an implicative hyper K-ideal if and only if I is a positive implicative hyper K-ideal of type 3.

Proof. Let I be a positive implicative hyper K-ideal of type 3. Without loss of generality assume that $I = \{0,1\}$. Let $(x \circ z) \circ (y \circ x) < I$ and $z \in I$, we show that $x \in I$. By Theorems 17.3 and 19.3 of [11], we have $2 \circ 1 = \{2\}, 2 \circ 0 = \{2\}, 1 \circ 2 = \{1\}, 1 \circ 0 = \{1\}, x \circ y \neq \{0,2\}$ and $x \circ y \neq \{0,1,2\}$ for all $x, y \in H$. Thus

(6)
$$x \circ y \subseteq \{0, 1\}, \text{ for all } x, y \in H.$$

Now, let x=2. In the following we show that, this case is impossible. To this end consider three different cases:

(i) Let z = 0. We consider the following subcases:

- (a) If y = 0, then by (6) we have $0 \circ 2 \subseteq \{0, 1\}$. Hence $(2 \circ 0) \circ (0 \circ 2) = 2 \circ (0 \circ 2) \subseteq 2 \circ \{0, 1\} = (2 \circ 0) \cup \{2 \circ 1\} = \{2\} \cup \{2\} = \{2\}$. So by hypothesis $(2 \circ 0) \circ (0 \circ 2) < \{0, 1\}$, therefore $\{2\} < \{0, 1\}$, which implies that 2 < 1. Thus we obtain a contradiction, because H satisfies the simple condition.
- (b) If y = 1, then $(2 \circ 0) \circ (1 \circ 2) = \{2\} \circ \{1\} = \{2\}$. By hypothesis $\{2\} < \{0,1\}$. Therefore 2 < 1, which is a contradiction.
- (c) If y = 2, then by (6), $2 \circ 2 \subseteq \{0, 1\}$. So $(2 \circ 0) \circ (2 \circ 2) = 2 \circ (2 \circ 2) \subseteq 2 \circ \{0, 1\} = (2 \circ 0) \cup (2 \circ 1) = \{2\} \cup \{2\} = \{2\}$. By hypothesis $\{2\} < \{0, 1\}$, hence 2 < 1, which is a contradiction.
- (ii) Let z = 1. Then a similar argument as the case of (i), gives a contradiction.

Note that by hypothesis $z \in I$ so $z \neq 2$. Hence x = 2 is impossible i.e., $x \neq 2$. Thus $x \in I$, which implies that I is an implicative hyper K-ideal. Conversely, let I be an implicative hyper K-ideal. Without loss of generality assume that $I = \{0,1\}$. Let $(x \circ y) \circ z < I$ and $y \circ z < I$ for $x,y,z \in H$, we must show that $x \circ z \subseteq I$. By Theorem 3.17 [11], we know that $1 \circ 0 = \{1\}$, $2 \circ 0 = \{2\}$, $1 \circ 2 \neq \{2\}$ and $2 \circ 1 \neq \{1\}$. Now we show that

- (I) $1 \circ 2 = \{1\}$
- (II) $2 \circ 1 = \{2\}$
- (III) $x \circ y \neq \{0, 2\}, x \circ y \neq \{0, 1, 2\}$; for all $x, y \in H$.
- (I): Let $1 \circ 2 \neq \{1\}$. Then $1 \not< 2$, since H is simple. Thus $0 \not\in 1 \circ 2$, therefore we must have $1 \circ 2 = \{1, 2\}$. But

$$0 \in 2 \circ 2 \subseteq (2 \circ 1) \cup (2 \circ 2) = 2 \circ \{1, 2\} = 2 \circ (1 \circ 2) = (2 \circ 0) \circ (1 \circ 2).$$

- So $(2 \circ 0) \circ (1 \circ 2) < I$. Since $0 \in I$, we conclude that $2 \in I$, which is a contradiction. Hence $1 \circ 2 = \{1\}$.
- (II): Suppose $2 \circ 1 \neq \{2\}$. Since $2 \not< 1$, $0 \not\in 2 \circ 1$ and since $2 \circ 1 \neq \{1\}$, thus we must have $2 \circ 1 = \{2, 1\}$. Now $\{1, 2\} = 2 \circ 1 = (2 \circ 0) \circ (1 \circ 2)$, by (I), that is $(2 \circ 0) \circ (1 \circ 2) < I$. Since $0 \in I$ and I is implicative we get that $2 \in I$ which is a contradiction. Hence $2 \circ 1 = \{2\}$.
- (III): By considering (I) and (II), it remains to show that none of $0 \circ 0$, $0 \circ 1$, $1 \circ 1$ and $2 \circ 2$ are equal to $\{0,2\}$ or $\{0,1,2\}$. Clearly all of them contain 0, so we show that none of them contain 2.
 - (a) $2 \notin 2 \circ 2$: Let $2 \in 2 \circ 2$. Then by (II) we have $0 \in 2 \circ 2 \subseteq 2 \circ (2 \circ 2) = (2 \circ 1) \circ (2 \circ 2)$, hence $(2 \circ 1) \circ (2 \circ 2) < I$. Since $1 \in I$, then $2 \in I$,

which is a contradiction. Therefore $2 \notin 2 \circ 2$.

- (b) The proof of $2 \notin 0 \circ 2$ is similar as (a).
- (c) $2 \notin 0 \circ 1$: Let $2 \in 0 \circ 1$. Then by (HK3) and (HK2) we have $2 \in 0 \circ 1 \subseteq (2 \circ 2) \circ 1 = (2 \circ 1) \circ 2$. By (I), $(2 \circ 1) \circ 2 = 2 \circ 2$, so $2 \in 2 \circ 2$, which is in contradiction with (a).
- (d) $2 \notin 1 \circ 1$: Let $2 \in 1 \circ 1$. Then by (HK2) and (I) we have

(7)
$$2 \in 1 \circ 1 = (1 \circ 2) \circ 1 = (1 \circ 1) \circ 2.$$

Since $0 \in 1 \circ 1$ and $2 \in 1 \circ 1$, then $1 \circ 1$ contains $\{0, 2\}$. Thus $1 \circ 1 = \{0, 2\}$ or $\{0, 1, 2\}$. If $1 \circ 1 = \{0, 1, 2\}$, then by (7), (I) and (II) we have

$$2 \in (1 \circ 1) \circ 2 = \{0, 1, 2\} \circ 2 = (0 \circ 2) \cup (1 \circ 2) \cup (2 \circ 2) \subseteq \{0, 1\},\$$

which is a contradiction. If $1 \circ 1 = \{0, 2\}$, then similarly we get a contradiction.

(e) $2 \notin 0 \circ 0$: Let $2 \in 0 \circ 0$. Then by (HK2), (HK3) and (d) we have $2 \in 0 \circ 0 \subseteq (1 \circ 1) \circ 0 = (1 \circ 0) \circ 1 = 1 \circ 1 \subseteq \{0, 1\}$, which is a contradiction. Thus (III) is proved.

Now, (III) imposes that $(H, \circ, 0)$ must have the following hyper structure table:

As we see, in the above table except the cases $2 \circ 0 = \{2\}$ and $2 \circ 1 = \{2\}$, the other possible cases of $x \circ z$ are subsets of I. That is $x \circ z \subseteq I$. Now we prove that if x = 2, z = 0 or x = 2, z = 1, then $(x \circ y) \circ z \not< I$, or $y \circ z \not< I$. Therefore the proof will be completed.

First let x = 2 and z = 0. If y = 0, then we have

$$2 = 2 \circ 0 = (2 \circ 0) \circ 0 < I = \{0, 1\},\$$

which is a contradiction. Similarly for y=1 or y=2 we obtain a contradiction.

Now, if x=2 and z=1, then by a similar argument as above we give a contradiction. Hence we proved that if $(x \circ y) \circ z < I$, and $y \circ z < I$, then $x \circ z \subseteq I$, for all $x, y, z \in H$. Thus I is a positive implicative hyper K-ideal of type 3.

COROLLARY 4.16. Let $H = \{0, 1, 2\}$ be a hyper K-algebra of order 3, that satisfies the simple condition and I be an implicative hyper K-ideal of H. Then I is a positive hyper K-ideal of types 1-8.

Proof. The proof follows from Theorem 4.15 and Theorem 3.5 of [1].

THEOREM 4.17. There are 12 non-isomorphic hyper K-algebras of order 3, with simple condition such that they have at least one proper implicative hyper K-ideal.

Proof. The proof follows from Theorems 3.20 and 3.21 of [11] and Theorem 4.15.

THEOREM 4.18. Let I be an implicative hyper K-ideal of H, that satisfies the strong transitive condition, A be a hyper K-ideal of H that contains I. Then A is an implicative hyper K-ideal of H.

Proof. Let $x \circ (y \circ x) < A$, we prove that $x \in A$. By Theorem 2.3 (ix) we have $x \circ A < y \circ x$. Since $I \subseteq A$, we get that $x \circ I < x \circ A$, hence $x \circ I < y \circ x$. Thus $x \circ (y \circ x) < I$, by Theorem 2.3 (ix). Since I is an implicative hyper K-ideal we get that $x \in I$, so $x \in A$. Therefore by Theorem 4.12 A is an implicative hyper K-ideal of H.

THEOREM 4.19. If $\{I_i|i\in\Lambda\}$ is a family of (weak) implicative hyper K-ideals, then $\bigcap_{i\in\Lambda}I_i$ is also a (weak) implicative hyper K-ideal.

Proof. The proof is straightforward.

THEOREM 4.20. Let (H, *, 0) be a BCK-algebra and I be a nonempty subset of H which satisfies the additive condition. If we consider the hyperoperation $x \circ y = \{x * y\}$ on H, then I is a weak implicative hyper K-ideal of H if and only if I is an implicative hyper K-ideal of H.

Proof. The proof is easy. \Box

OPEN PROBLEM. Under what suitable condition each weak implicative hyper K-ideal is an implicative hyper K-ideal?

References

- [1] R. A. Borzooei, P. Corsini and M. M. Zahedi, *Some kinds of positive Implicative hyper K-ideals*, Journal of Discrete Mathematical Sciences and Cryptography, Delhi, (to appear).
- [2] R. A. Borzooei, A. Hasankhani, M. M. Zahedi and Y. B. Jun, On hyper K-algebras, Math. Japon. 52 (2000), no. 1, 113–121.

- [3] R. A. Borzooei and M. M. Zahedi, *Positive Implicative hyper K-ideals*, Sci. Math. Jpn. **53** (2001), no. 3, 525–533.
- [4] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, 1993.
- [5] Y. Imai and K. Iseki, On axiom systems of propositional calculi, XIV Proc. Japan Academy 42 (1966), 19–22.
- [6] K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon 23 (1978), 1-26.
- [7] Y. B. Jun, X. L. Xin, E. H. Roh and M. M. Zahedi, Strong hyper BCK-ideals of hyper BCK-algebras, Math. Japon 51 (2000), no. 3, 493-498.
- [8] Y. B. Jun, M. M. Zahedi, X. L. Xin and R. A. Borzooei, On hyper BCK-algebras, Italian Journal of Pure and Applied Mathematics, (2000), no. 8, 127–136.
- [9] F. Marty, Sur une generalization de la notion de groups, 8th congress Math. Scandinaves, Stockholm, (1934), 45–49.
- [10] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moonsa, Seoul, Korea, 1994.
- [11] M. M. Zahedi, R. A. Borzooei and H. Rezaei, Some classification of hyper K-algebras of order 3, Sci. Math. Jpn. 53 (2001), no. 1, 133-142.
- [12] M. M. Zahedi, R. A. Borzooei, Y. B. Jun and A. Hasankhani, Some results on hyper K-algebra, Sci. Math. 3 (2000), no. 1, 53-59.

A. BORUMAND SAEID, DEPARTMENT OF MATHEMATICS, ISLAMIC AZAD UNIVERSITY OF KERMAN, KERMAN, IRAN

E-mail: arsham@iauk.ac.ir

R. A. Borzooei, Department of Mathematics, Sistan and Baluchestan University, Zahedan, Iran

E-mail: borzooei@hamoon.usb.ac.ir

M. M. Zahedi, Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran

E-mail: zahedi_mm@mail.uk.ac.ir