DOI QR코드

DOI QR Code

CYCLIC PRESENTATIONS OF GROUPS AND CYCLIC BRANCHED COVERINGS OF (1, 1)-KNOTS

  • Published : 2003.02.01

Abstract

In this paper we study the connections between cyclic presentations of groups and cyclic branched coverings of (1, 1)- knots. In particular, we prove that every π-fold strongly-cyclic branched covering of a (1, 1)-knot admits a cyclic presentation for the fundamental group encoded by a Heegaard diagram of genus π.

Keywords

References

  1. Proc. Edinb. Math. Soc. v.42 On the cyclic coverings of the knot 5₂ P. Bandieri;A. C. Kim;M. Mulazzani https://doi.org/10.1017/S0013091500020538
  2. Topology Appl. v.38 The knots in D²×S¹ with non-trivial Dehn surgery yielding D²×S¹ J. Berge https://doi.org/10.1016/0166-8641(91)90037-M
  3. Trans. Am. Math. Soc. v.213 Heegaard splittings of branched coverings of S³ J. S. Birman;H. M. Hilden https://doi.org/10.2307/1998049
  4. to appear in Math. Proc. Cambridge Philos. Soc. Strongly-cyclic branched coverings of (1,1)-konts and cyclic presentation of groups A. Cattabriga;M. Mulazzani
  5. Algebra Colloq v.5 A geometric study of Sieradsky groups A. Cavicchioli;F. Hegenbarth;A. C. Kim
  6. Math. Ann. v.294 A generalized bridge number for links in 3-manifold H. Doll https://doi.org/10.1007/BF01934349
  7. Proc. Inter. Conf. Groups-Korea '94 Cyclic presentations and 3-manifolds M. J. Dunwoody
  8. Proc. Am. Math. Soc. v.128 Geometric indices and the Alexander polynomial of knot H. Fujii
  9. Topology v.28 Surgery on knots in solid tori D. Gabai https://doi.org/10.1016/0040-9383(89)90028-1
  10. Topology Appl. v.37 1-bridge braids in solid tori D. Gabai https://doi.org/10.1016/0166-8641(90)90021-S
  11. Rev. Mat. Univ. Complutense Madr. v.3 3-manifold spines and bijoins L. Grasselli
  12. Forum Math. v.13 Genus one 1-bridge knots and Dunwoody manifolds L. Grasselli;M. Mulazzani https://doi.org/10.1515/form.2001.013
  13. Math. Proc. Camb. Philos .Soc. v.125 Genus one 1-bridge positions for the trivial knot and cabled knots C. Hayashi https://doi.org/10.1017/S0305004198002916
  14. Osaka J. Math. v.36 Satellite knots in 1-genus 1-bridge positions C. Hayashi
  15. Commun. Algebra v.23 Some honey-combs in hyperbolic 3-space H. Helling;A. C. Kim;J. L. Mennicke https://doi.org/10.1080/00927879508825526
  16. J. Lie Theory v.8 A geometric study of Fibonacci groups H. Helling;A. C. Kim;J. L. Mennicke
  17. London Math. Soc. Lect. Note Ser. v.42 Topics in the theory of group presentations D. L. Johnson
  18. Contemp. Math. v.184 On the Fibonacci group and related topics A. C. Kim https://doi.org/10.1090/conm/184/2119
  19. Proc. Inter. Conf. Groups-Korea '98 On a class of cyclically presented groups A. C. Kim;Y. Kim;A. Vesnin
  20. J. Korean Math. Soc. v.35 The knot 5₂and cyclically presented groups G. Kim;Y. Kim;A. Vesnin
  21. Transform. Groups v.2 Generalised Fibonacci manifolds C. Maclachlan;A. W. Reid https://doi.org/10.1007/BF01235939
  22. Math. Proc. Camb. Philos. Soc. v.94 Representing 3-manifolds by a universal branching set J. M. Montesinos https://doi.org/10.1017/S0305004100060941
  23. Math. Ann. v.289 On unknotting tunnels for knots K. Morimoto;M. Sakuma https://doi.org/10.1007/BF01446565
  24. Math. Proc. Camb. Phil. Soc. v.119 Examples of tunnel number one knots which have the property '1+1=3' K. Morimoto;M. Sakuma;Y. Yokota https://doi.org/10.1017/S0305004100074028
  25. J. Math. Soc. Japan v.48 Identifying tunnel number one knots K. Morimoto;M. Sakuma;Y. Yokota https://doi.org/10.2969/jmsj/04840667
  26. Proc. Camb. Philos. Soc. v.64 An algorithm for the construction of 3-manifolds from 2-complexes L. Neuwirth https://doi.org/10.1017/S0305004100043279
  27. Am. J. Math. v.96 Group presentations corresponding to spines of 3-manifolds I R. P. Osborne;R. S. Stevens https://doi.org/10.2307/2373554
  28. Trans. Am. Math. Soc. v.234 Group presentations corresponding to spines of 3-manifolds Ⅱ R. P. Osborne;R. S. Stevens
  29. Trans. Am. Math. Soc. v.234 Group presentations corresponding to spines of 3-manifolds Ⅲ R. P. Osborne;R. S. Stevens
  30. Proceedings of Workshop in Pure Mathematics "Geometry and Topology" v.19 Dunwoody 3-manifolds and (1,1)-decomposible knots H. J. Song;S. H. Kim;Jongsu Kim(Ed.);Sungbok Hong(Ed.)
  31. Trans. Am. Math. Soc. v.205 Classificatioin of 3-manifolds with certain spines R. S. Stevens https://doi.org/10.2307/1997196
  32. Siberian Math. J. v.39 Fractional Fibonacci groups and manifolds A. Vesnin;A. C. Kim https://doi.org/10.1007/BF02673051
  33. Topology v.31 Incompressibility of surfaces in surgered 3-manifold Y.-Q. Wu https://doi.org/10.1016/0040-9383(92)90020-I
  34. Math. Ann. v.295 ∂-reducing Dehn surgeries and 1-bridge knots Y.-Q. Wu https://doi.org/10.1007/BF01444890
  35. Math. Proc. Cambridge Philos. Soc. v.120 Incompressible surfaces and Dehn surgery on 1-bridge knots in handle-body Y.-Q. Wu https://doi.org/10.1017/S030500410000164X
  36. Y.-Q. Wu, Incompressible surfaces and Dehn surgery on 1-bridge knots in handle-body, Math. Proc. Cambridge Philos. Soc. 120 (1996), 687–696. https://doi.org/10.1017/S030500410000164X

Cited by

  1. ON THE 2-BRIDGE KNOTS OF DUNWOODY (1, 1)-KNOTS vol.48, pp.1, 2011, https://doi.org/10.4134/BKMS.2011.48.1.197
  2. APPROXIMATE CONTROLLABILITY FOR DIFFERENTIAL EQUATIONS WITH QUASI-AUTONOMOUS OPERATORS vol.48, pp.1, 2011, https://doi.org/10.4134/BKMS.2011.48.1.001
  3. Bitwist manifolds and two-bridge knots vol.284, pp.1, 2016, https://doi.org/10.2140/pjm.2016.284.1
  4. THE ALEXANDER POLYNOMIAL OF (1,1)-KNOTS vol.15, pp.09, 2006, https://doi.org/10.1142/S0218216506005019
  5. Strongly-cyclic branched coverings of knots via (g, 1)-decompositions vol.116, pp.1-2, 2007, https://doi.org/10.1007/s10474-007-6029-2
  6. Seifert manifolds and (1, 1)-knots vol.50, pp.1, 2009, https://doi.org/10.1007/s11202-009-0003-x
  7. The Dual and Mirror Images of the Dunwoody 3-Manifolds vol.2013, 2013, https://doi.org/10.1155/2013/103209
  8. Knot Floer Homology of (1, 1)-Knots vol.112, pp.1, 2005, https://doi.org/10.1007/s10711-004-5403-2
  9. Cyclic branched coverings of lens spaces vol.52, pp.3, 2011, https://doi.org/10.1134/S0037446611030050
  10. On the Polynomial of the Dunwoody (1, 1)-knots vol.52, pp.2, 2012, https://doi.org/10.5666/KMJ.2012.52.2.223
  11. ON A FREIHEITSSATZ FOR CYCLIC PRESENTATIONS vol.17, pp.05n06, 2007, https://doi.org/10.1142/S0218196707004049
  12. (1, 1)-knots via the mapping class group of the twice punctured torus vol.4, pp.2, 2004, https://doi.org/10.1515/advg.2004.016