References
- Proc. Edinb. Math. Soc. v.42 On the cyclic coverings of the knot 5₂ P. Bandieri;A. C. Kim;M. Mulazzani https://doi.org/10.1017/S0013091500020538
- Topology Appl. v.38 The knots in D²×S¹ with non-trivial Dehn surgery yielding D²×S¹ J. Berge https://doi.org/10.1016/0166-8641(91)90037-M
- Trans. Am. Math. Soc. v.213 Heegaard splittings of branched coverings of S³ J. S. Birman;H. M. Hilden https://doi.org/10.2307/1998049
- to appear in Math. Proc. Cambridge Philos. Soc. Strongly-cyclic branched coverings of (1,1)-konts and cyclic presentation of groups A. Cattabriga;M. Mulazzani
- Algebra Colloq v.5 A geometric study of Sieradsky groups A. Cavicchioli;F. Hegenbarth;A. C. Kim
- Math. Ann. v.294 A generalized bridge number for links in 3-manifold H. Doll https://doi.org/10.1007/BF01934349
- Proc. Inter. Conf. Groups-Korea '94 Cyclic presentations and 3-manifolds M. J. Dunwoody
- Proc. Am. Math. Soc. v.128 Geometric indices and the Alexander polynomial of knot H. Fujii
- Topology v.28 Surgery on knots in solid tori D. Gabai https://doi.org/10.1016/0040-9383(89)90028-1
- Topology Appl. v.37 1-bridge braids in solid tori D. Gabai https://doi.org/10.1016/0166-8641(90)90021-S
- Rev. Mat. Univ. Complutense Madr. v.3 3-manifold spines and bijoins L. Grasselli
- Forum Math. v.13 Genus one 1-bridge knots and Dunwoody manifolds L. Grasselli;M. Mulazzani https://doi.org/10.1515/form.2001.013
- Math. Proc. Camb. Philos .Soc. v.125 Genus one 1-bridge positions for the trivial knot and cabled knots C. Hayashi https://doi.org/10.1017/S0305004198002916
- Osaka J. Math. v.36 Satellite knots in 1-genus 1-bridge positions C. Hayashi
- Commun. Algebra v.23 Some honey-combs in hyperbolic 3-space H. Helling;A. C. Kim;J. L. Mennicke https://doi.org/10.1080/00927879508825526
- J. Lie Theory v.8 A geometric study of Fibonacci groups H. Helling;A. C. Kim;J. L. Mennicke
- London Math. Soc. Lect. Note Ser. v.42 Topics in the theory of group presentations D. L. Johnson
- Contemp. Math. v.184 On the Fibonacci group and related topics A. C. Kim https://doi.org/10.1090/conm/184/2119
- Proc. Inter. Conf. Groups-Korea '98 On a class of cyclically presented groups A. C. Kim;Y. Kim;A. Vesnin
- J. Korean Math. Soc. v.35 The knot 5₂and cyclically presented groups G. Kim;Y. Kim;A. Vesnin
- Transform. Groups v.2 Generalised Fibonacci manifolds C. Maclachlan;A. W. Reid https://doi.org/10.1007/BF01235939
- Math. Proc. Camb. Philos. Soc. v.94 Representing 3-manifolds by a universal branching set J. M. Montesinos https://doi.org/10.1017/S0305004100060941
- Math. Ann. v.289 On unknotting tunnels for knots K. Morimoto;M. Sakuma https://doi.org/10.1007/BF01446565
- Math. Proc. Camb. Phil. Soc. v.119 Examples of tunnel number one knots which have the property '1+1=3' K. Morimoto;M. Sakuma;Y. Yokota https://doi.org/10.1017/S0305004100074028
- J. Math. Soc. Japan v.48 Identifying tunnel number one knots K. Morimoto;M. Sakuma;Y. Yokota https://doi.org/10.2969/jmsj/04840667
- Proc. Camb. Philos. Soc. v.64 An algorithm for the construction of 3-manifolds from 2-complexes L. Neuwirth https://doi.org/10.1017/S0305004100043279
- Am. J. Math. v.96 Group presentations corresponding to spines of 3-manifolds I R. P. Osborne;R. S. Stevens https://doi.org/10.2307/2373554
- Trans. Am. Math. Soc. v.234 Group presentations corresponding to spines of 3-manifolds Ⅱ R. P. Osborne;R. S. Stevens
- Trans. Am. Math. Soc. v.234 Group presentations corresponding to spines of 3-manifolds Ⅲ R. P. Osborne;R. S. Stevens
- Proceedings of Workshop in Pure Mathematics "Geometry and Topology" v.19 Dunwoody 3-manifolds and (1,1)-decomposible knots H. J. Song;S. H. Kim;Jongsu Kim(Ed.);Sungbok Hong(Ed.)
- Trans. Am. Math. Soc. v.205 Classificatioin of 3-manifolds with certain spines R. S. Stevens https://doi.org/10.2307/1997196
- Siberian Math. J. v.39 Fractional Fibonacci groups and manifolds A. Vesnin;A. C. Kim https://doi.org/10.1007/BF02673051
- Topology v.31 Incompressibility of surfaces in surgered 3-manifold Y.-Q. Wu https://doi.org/10.1016/0040-9383(92)90020-I
- Math. Ann. v.295 ∂-reducing Dehn surgeries and 1-bridge knots Y.-Q. Wu https://doi.org/10.1007/BF01444890
- Math. Proc. Cambridge Philos. Soc. v.120 Incompressible surfaces and Dehn surgery on 1-bridge knots in handle-body Y.-Q. Wu https://doi.org/10.1017/S030500410000164X
- Y.-Q. Wu, Incompressible surfaces and Dehn surgery on 1-bridge knots in handle-body, Math. Proc. Cambridge Philos. Soc. 120 (1996), 687–696. https://doi.org/10.1017/S030500410000164X
Cited by
- ON THE 2-BRIDGE KNOTS OF DUNWOODY (1, 1)-KNOTS vol.48, pp.1, 2011, https://doi.org/10.4134/BKMS.2011.48.1.197
- APPROXIMATE CONTROLLABILITY FOR DIFFERENTIAL EQUATIONS WITH QUASI-AUTONOMOUS OPERATORS vol.48, pp.1, 2011, https://doi.org/10.4134/BKMS.2011.48.1.001
- Bitwist manifolds and two-bridge knots vol.284, pp.1, 2016, https://doi.org/10.2140/pjm.2016.284.1
- THE ALEXANDER POLYNOMIAL OF (1,1)-KNOTS vol.15, pp.09, 2006, https://doi.org/10.1142/S0218216506005019
- Strongly-cyclic branched coverings of knots via (g, 1)-decompositions vol.116, pp.1-2, 2007, https://doi.org/10.1007/s10474-007-6029-2
- Seifert manifolds and (1, 1)-knots vol.50, pp.1, 2009, https://doi.org/10.1007/s11202-009-0003-x
- The Dual and Mirror Images of the Dunwoody 3-Manifolds vol.2013, 2013, https://doi.org/10.1155/2013/103209
- Knot Floer Homology of (1, 1)-Knots vol.112, pp.1, 2005, https://doi.org/10.1007/s10711-004-5403-2
- Cyclic branched coverings of lens spaces vol.52, pp.3, 2011, https://doi.org/10.1134/S0037446611030050
- On the Polynomial of the Dunwoody (1, 1)-knots vol.52, pp.2, 2012, https://doi.org/10.5666/KMJ.2012.52.2.223
- ON A FREIHEITSSATZ FOR CYCLIC PRESENTATIONS vol.17, pp.05n06, 2007, https://doi.org/10.1142/S0218196707004049
- (1, 1)-knots via the mapping class group of the twice punctured torus vol.4, pp.2, 2004, https://doi.org/10.1515/advg.2004.016