A Molecular Dynamics Simulation on the Self-assembly of ABC Triblock Copolymers.3. Effects of Block Composition in Asymmetric Triblock Copolymers

  • Ko, Min-Jae (Hyperstructured Organic Materials Research Center and School of Materials Science Engineering, Seoul National University) ;
  • Kim, Seung-Hyun (Hyperstructured Organic Materials Research Center and School of Materials Science Engineering, Seoul National University) ;
  • Jo, Won-Ho (Hyperstructured Organic Materials Research Center and School of Materials Science Engineering, Seoul National University)
  • 발행 : 2003.03.01

초록

The self-assembly of asymmetric ABC triblock copolymers in the ordered structure is investigated using an isothermal-isobaric molecular dynamics simulation. Unlike symmetric A BC triblock copolymers, more fascinating mophologies are observed in asymmetric ones because of a larger difference of incompatibility between the components. Various modes of self-assembly in assymmetric ABC triblock copolymers are also observed depending on the block composition. When the composition of block A Is changed from 0.125: to 0.25 at the same $f_B$ : 0.25, the morphological transition from the “cylinder in cylinder” to “cylinders at cylinder” structure is observed in the simulation. In the case of ABC triblocks with $f_B$=0.5, a lamellar-type structure is changed to a cylinder-type structure with increasing the length of block A. When the midblock length increases further to $f_B$=0.625, the “spheres on cylinder” structure is observed in both the $A_{10}$$B_{50}$$C_{20}$ and $A_{20}$$B_{50}$$C_{10}$ triblocks. From these results, the phase diagram of ABC triblock copolymers can be constructed.

키워드

참고문헌

  1. D. A. Hajduk, P. E. Harper, S. M. Gruner, C. C. Honeker, G. Kim, E. L. Thomas, and L. J. Fetter, Macromolecules, 27,4063 (1994) https://doi.org/10.1021/ma00093a006
  2. T. Hashimoto, M. Shibayarna, and H. Kawai, Macromolecules, 13, 1237 (1980) https://doi.org/10.1021/ma60077a040
  3. T. P. Russell, T. E. Karis, Y. Gallot, and A. M. Mayes, Nature, 368, 729 (1994) https://doi.org/10.1038/368729a0
  4. L. Leibler, Macromolecules, 13, 1602 (1980) https://doi.org/10.1021/ma60078a047
  5. M. Matsen and F.S. Bates, Macromolecules, 29, 1092 (1996)
  6. M. Matsen and F.S. Bates, J. Chem. Phys., 106, 1997 (1997) https://doi.org/10.1063/1.473307
  7. M. J. Ko, S. H. Kim, and W. H. Jo, Macromol. Theory Simul., 10, 381 (2001) https://doi.org/10.1002/1521-3919(20010401)10:4<381::AID-MATS381>3.0.CO;2-V
  8. M. J. Ko, S. H. Kim, and W. H. Jo, Fibers and Polymers, 3, 8 (2002) https://doi.org/10.1007/BF02875362
  9. R. Stadler, C. Auschra, J. Beckmann, U. Krappe, 1. VoigtMartin, and L. Leibler, Macromolecules, 28, 3080 (1995) https://doi.org/10.1021/ma00113a010
  10. U. Krappe, R. Stadler, and I. Voigt-Marrin, Macromolecules, 28, 4558 (1995) https://doi.org/10.1021/ma00117a027
  11. U. Breiner, U. Krappe, V. Abetz, and R. Stadler, Macromol. Chem. Phys., 198, 1051 (1998) https://doi.org/10.1002/macp.1997.021980411
  12. U. Breiner, U. Krappe, T. Jakob, V. Abetz, and R. Stadler, Polym. Bull., 40, 219 (1998) https://doi.org/10.1007/s002890050245
  13. V. Abetz and R. Stadler, Macromol. Symp., 113, 19 (1997) https://doi.org/10.1002/masy.19971130105
  14. K. Jung, A. Volker, and R. Stadler, Macromolecules, 29, 1076 (1996) https://doi.org/10.1021/ma951307z
  15. Y. Mogi, M. Nomura, H. Kotsuji, K. Ohnishi, Y. Matsushita, and I. Noda, Macromolecules, 27, 6755 (1994) https://doi.org/10.1021/ma00101a013
  16. Y. Mogi, H. Kotsuji, Y. Kaneko, K. Mori, Y. Matsushita, and I. Noda, Macromolecules, 25, 5408 (1992) https://doi.org/10.1021/ma00046a043
  17. Y. Mogi, H. Kotsuji, K. Ohnishi, Y. Matsushita, and I. Noda, Macromolecules, 25, 5412 (1992) https://doi.org/10.1021/ma00046a044
  18. S. P. Gido, D. W. Schwark, E. L. Thomas, and M. D. Goncalves, Macromolecules, 26, 2636 (1993) https://doi.org/10.1021/ma00062a040
  19. S. Brinkmann, R. Stadler, and E. L. Thomas, Macromolecules, 31, 6566 (1998) https://doi.org/10.1021/ma980103q