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Abstract

It is expected that particle size distribution of any portion obtained through screening, is of more uniform
than that of the original mixture, typically following such as log-normal, Rosin-Rammler distributions and
so on. In this study, therefore, a new relation between parameters of the uniform distribution and flow char-
acteristics of the coarse particle suspensions is derived based on the continuous polydisperse model
(Ookawara and Ogawa, 2002b), which is derived from the discrete polydisperse model (Ookawara and
Ogawa, 2002a). The derived model equation predicts a linear increase of viscosity with shear rate, viz., dila-
tant flow characteristics. Further, the increase of viscosity is expected to be proportional to the square of
volume fraction of particles, and to show the linear dependency on density and average diameter of par-
ticles. It is also shown that the uniform distribution model includes additional term that expresses the effect
of distribution width. For verification of the model, the experimental results of Clarke (1967) are cited as
well as in our previous work for the monodisperse model (Ookawara and Ogawa, 2000) since most param-
eters were varied independently in his work. It is suggested that the newly introduced term expands the
applicable range compared with the monodisperse model.
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1. Introduction

Dilatancy of concentrated suspension is always observed
in the appropriate shear rate range when the dispersed solid
particles are nonaggregating (Bames, 1989). Although
there are many studies on critical shear rate for the onset of
<hear thickening and the controlling parameters, size dis-
tribution effects on the flow curve has not been paid much
attention by most researchers except Alince and Lepoutre
(1983). Further, there can not be seen any physical model
to predict the dilatant flow curve. On the other hand, there
exist many studies on the suspension viscosity probably
disregarding its shear thickening or shear thinning prop-
erties, or excluding the range in which such properties can
be seen significantly. The viscosity dependency on volume
traction of particles, the diameter, and so on, has been dis-
cussed also assuming monodisperse particles even if they
ure polydisperse in the strict sense.

In our previous work (Ookawara and Ogawa, 2000), a
new physical model was proposed for the quantitative pre-
diction of dilatant flow curve of suspension in which dis-
persed particles were also assumed to be monodsiperse.
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The monodisperse model simply assumes that the momen-
tum transport induced per collision is equal to the momen-
tum difference between particles. In the subsequent study
(Ookawara and Ogawa, 2002a), we proposed the expanded
model for discrete polydisperse particles such as bimodal
and trimodal distributions. In the latest work (Ookawara
and Ogawa, 2002b), continuous polydisperse model was
presented by mathematical expansion of the discrete
model. It is shown that the continuous model gives rela-
tions between the viscosity and parameters of represen-
tative particle size distributions such as log-normal, Rosin-
Rammler distributions and so on.

Since most parameters included in our model were varied
independently in the work of Clarke (1967), his experi-
mental data was utilized for verification of the monodis-
perse model. The particle size of each portion is indicated
by maximum and minimum diameters as listed in Table 1.
Since we did not incorporate the size distribution effect
into the monodisperse model, arithmetical mean of them
were utilized as characteristic diameter of monodisperse
particles (Ookawara and Ogawa, 2000). In the present
study, therefore, more precise verification of our physical
model is performed by applying the continuous polydis-
perse model to the data of Clarke (1967).
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2. Constitutive model equation

2.1. Monodisperse model

The monodisperse model assumes that each rigid particle
dispersed in a suspension moves at velocity of fluid layer
flowing at a given shear rate, in which each particle center
exists, without aggregation, Brownian motion, rotational
motion. If certain two particles exist in different but adja-
cent laminar flow layers, they collide at relative velocity
that is proportional to the shear rate and length between
layers. The momentum difference between those two par-
ticles is transported from a fluid layer in which faster par-
ticle exists, to the adjacent layer in which slower particle is
contained. The summation of momentum transported
through control unit area is regarded as the increase of
momentum flux that results in viscosity augmentation.
Based on the model, the increased momentum flux T,,uison
[Pa] is expressed as;

Tcalli:iun = kppD7L2}./2 (1)

where k [m], p, [kg/m’], D [m], L [1/m’], and ¥ [s™'] are
arbitrary experimental coefficient, density, diameter and
number density of particle, and shear rate, respectively.

2.2, Discrete and continuous polydisperse models

The discrete polydisperse model assumes that suspension
particles consist of M monodisperse portions whose diam-
eters are D\, D,, ..., D,, ..., Dy, [m], and whose number
densities are L,, L,, ..., L, ..., Ly [l/m’), respectively.
Based on the same assumption of collision, the increase of
momentum flux 7, [Pa] is expressed as;

M M
Trotal = kP,,J/'_Zl ‘21 Lij3Liji4 (2)
i=1j=

where D; [m] is radius of imaginary collision sphere
defined for the calculation of collision frequency as;

D+D.
Dji=_12_—l (3)

Subscripts i and j are indices to distinguish the particles
inside and outside of a shell defined for momentum bal-
ance.

The limit as M tends to infinity converges to integral
form, viz., continuous polydisperse model as;

2 N Y
Toorat =kPyY (W) o [ dn,Ddn,D;;* @)

where N is total particle number dispersed in a sus-
pension whose volume is V [m®], and n [%] is cumulative
percentage undersize by number, respectively. This equa-
tion makes it possible to estimate the increased momen-
tum flux for any distribution expressed by continuous
function.
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Table 1. Particle size range given by Clarke(1967). The density is
2,580 kg/m® for quartz particles of all sizes. For
D =64.5 um, other three types of sphere particles were
used, whose densities are 1,168, 2,360 and 2,960 kg/m3,
respectively. The detail specification is listed in the pre-
vious work (Ookawara and Ogawa, 2000)

Particle size range [um] D, [um] Cy=0/D, [-] u," (C)) []
152-211 181.5 0.094 1.05
104-152 128 0.108 1.07
76-104 90 0.090 1.05
53- 76 64.5 0.103 1.06
10- 44 27.0 0.364 1.55

Table Al. Tyler standard sieve series

Tyler mesh Opening [um]
60 246
65 208
80 175

100 147
115 124
150 104
170 89
200 74
250 61
270 K]
325 43
400 38

Table A2. U.S. sieve series

Sieve No. Opening [um]
60 250
70 210
80 177

100 149
120 125
140 105
170 88
200 74
230 62
270 53
325 44

2.3. Suspension with uniform particle size distri-
bution

As shown in Table 1, size of particles used by Clarke
(1967) is indicated by each distribution range. Referring to
the specification, especially underlined values, of Tyler
standard sieve series (Table Al) and U.S. sieve series
(Table A2), it seems that he used some kind of sieve series
to obtain the particles. Since it is expected that particle size
distribution of any portion obtained through screening, is
of more uniform than that of original mixture, completely
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Fig. 1. Uniform particle size distribution assumed to be obtained
through screening.
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uniform size distribution is reasonably assumed in this
study. Figure 1 shows the assumed number size distribution
t1at is constant in the range of minimum diameter D, ,;, [m]
t> maximum diameter D,,,, [m]. For such a uniform dis-
t-1bution, mean diameter D, [m] and standard deviation &
[m] are expressed as;

Dmm+Dmux
D, === 5)
and
D,...—D,.;
c= max min 6

The cumulative percentage undersize by number n [%] is
expressed as;

199 p_p,.) (Dpw<D<D, )
,o) 2.0 (7)
O (DSDmin)
100 (D>D,,.)

and size distribution is;

dn 100
a5=1230

0 (D<DmimD>Dmax)

(Dmm—D Dmax) (8)

Fq. (8) makes it possible to change the integral variable n
i1 Eq. (4) to D as;

Tura =kPyY (2 ﬁov) Jore fore DD, dD,dD, ©)

By using D, and coefficient of variation;

Cr=p (10)

Eq. (9) is calculated as;
R 2
o =kp,,y‘("l/’) Du’( 1+ 12CV2+24CV“+517‘1CV°) (11)

Since mean volume diameter D, [m] is also calculated as;
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1
100 7, 3 .
DV:[()JIOOdn =D, Y1+3Cy (12)
[

Eq. (11) is rewritten by using volume fraction of particles
C and volume shape factor ¢, as;

Tonat =k, 7 C* Doy’ (C) (13)
where
k
ky = =5 (14)
Te
and
1+12Cy +24CV4+574CV
1y (Cy) = p (15)
(1+3Cy )
Eventually, flow curve of the suspension is expressed as
= { o+ kyp, C*YD 4" (Co) Y (16)

where U, is the continuous phase viscosity. Further, sus-
pension viscosity is expressed as;

1= flog+kyp, YDy (Cy) a7

The term u,” (Cy) is additionally contained in this equation
compared with the monodisperse model. By means of this
term, the influence of distribution width on flow curve can
be analyzed independent of average diameter. Additionally,
the term can be regarded as correction coefficient for poly-
disperse particles to simulate monodisperse particles whose
diameter is regarded as D, (Cy). In other words, the
product of D, and p,” (Cy) corresponds to the diameter of
monodisperse particles that results in same viscosity
increase. Since Eq. (17) converges to the monodisperse
model as Cy tends to 0, incidentally, it can be said this
model is mathematically consistent with previous models.

Figure 2 shows the relation between Cy and p,’ (Cy). The
relation between geometric standard deviation o, and
Ui (0,) (Ookawara and Ogawa, 2002b) is also shown
because of the similarity of both indices for the distribution
width, viz., the both values of (Cy+1) and o, correspond to
the ratio D,g4,3/Dso. Herein, D,z 13 and Ds, are diameters
where each cumulative undersize is 84.13% and 50%,
respectively. The physical significance of u,,," (o,) is equal
to that of u,” (Cy) abovementioned. It can be seen that both
functions increase exponentially with the indices. The
function u," (Cy), however, shows relatively slower
increase than u,,," (0,). This is because of mathematically
infinite integral range of log-normal distribution including
the effect of larger particles compared with uniform dis-
tribution. It can be seen that, to the contrary, the function
value is kept less than 1.05 and can be regarded as nearly
constant in the Cy range of below 0.1. Since any proper
sieve series has sufficiently small opening differences as
listed in Tables Al and A2, C, of any portion obtained by
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screening, except top and bottom, is sufficiently small as
shown in Table 1. Therefore, such portion could be
regarded as monodisperse from the viewpoint of our sus-
pension viscosity model.

3. Verification

The coefficient ky, in Eq. (17) should be determined by
experiments since it is assumption that the momentum
transported between fluid layers per collision is equal to
the momentum difference between particles. For the ver-
ification of derived equation, therefore, experimental data
of Clarke (1967) is cited in this study since controlling
parameters, viz., density and diameter of particle, shear
rate, and volume fraction, were varied independently in his
work.

If viscosity dependency on each parameter can be
described by a unique value of &y in a particular range, that
is the very range in which the model can be regarded as
valid practically. The unique value is denoted by &, in this
study. Subsequently to the determination of k;, the model
predicts a linear increase of viscosity with shear rate, viz.,
dilatant flow characteristics. Further, the increase of vis-
cosity is expected to be proportional to the square of vol-
ume fraction, and to show the linear dependency on density
and diameter of particle.

Since viscosity measurement was performed at 25.0+
0.1°C in his study, viscosity of disperse medium, which is
water, is set to 0.000894 Pa-s in the following discussion.
Further, the values of all symbols in the following figures
are read from the figures in his work.

3.1. Suspension of quartz particle

Figure 3 shows the viscosity dependency on shear rate in
the range of 109.7 to 327.7 s~ for quartz particles, whose
density, average diameter and volume fraction range are
2,580 kg/m’, 181.5x107° m and 0.05 to 0.30, respectively.
Substitution of these known values for parameters in Eq.
(17) yields Eq. (18) as follows.

1= 0.000894
+ky[(2,580)(181.5% 107°)(1.05)(0.05°---0.307) ]y (18)

The comparison of Eq. (18) with the results of curve fit
gives ky value for each volume fraction as listed in Table 2.
Coefticients for the monodisperse model are also shown
for the comparison. Since the value of u,” (Cy) is constant
in this case, ky is simply 1.05 times as k. It can be seen that
ky values marked by asterisk are similar to each other in
volume fraction range of 0.15 to 0.25. On the other hand,
other ky values increase as volume fraction goes away from
this range. In the following Figs. 3-6, broken lines are
drawn by using unmarked k, values listed in the corre-
sponding tables and solid lines are drawn by k,,, which is
average of marked ky; and the value is 0.00181 m for quartz
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Fig. 2. Comparison between non-dimensional functions " (Cy)
based on uniform distribution and ,u,gg* (0,) based on log-
normal distribution.

Table 2. The values of parameter &, [mm] calculated based on the
viscosity dependency shown in Fig. 3

C L] ky [mm) k [mm]
0.05 7.09 7.44
0.10 272 2.85
0.15 *1.88 1.97
0.20 *1.74 1.82
0.25 *1.77 1.85
0.275 243 2.55
0.30 3.70 3.88

particle in this study. It can be seen in Fig. 3 that it is pos-
sible to estimate viscosity change by using the unique
value of k; in the above concentration and shear rate
ranges. It should be noted, further, broken lines also fit the
plots very well in spite that &, values are considerably dif-
ferent from k; value.

Figure 4 shows the viscosity dependency at shear rate of
216.6 s on the corrected diameter D,y (Cy) for quartz
particles, whose volume fraction range is 0.10 to 0.30. Sub-
stitution of these known values for parameters in Eq. (17)
yields Eq. (19) as follows.

= 0.000894 +k,[(2,580)(0.10%--0.30%)(216.6)1D,1," (Cy)
(19

The comparison of Eq. (19) with the results of curve fit
gives ky value for each volume fraction as listed in Table 3.
Coefficients for the monodisperse model are also shown
for the comparison. It can be seen that &y values marked by
asterisk are also similar to each other in the concentration
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Fig. 3. Viscosity increase with shear rates for quartz particle sus-
pensions. (p,=2,580 kg/m’; D,=181.5 um; p,” (C,)=1.05;
C=0.05-0.30; 14,=0.000894 Pa-s).

Table 3. The values of parameter k, [mm] calculated based on the
viscosity dependency shown in Fig. 4

Cll ky [mm] k [mm]
0.10 *1.71 1.83
0.15 *1.65 1.75
0.20 *1.70 1.80
0.25 *1.94 2.04
0.30 4.13 4.35

range of 0.10 to 0.25, and also similar to values marked
by asterisk in Tables 2 and 4(a). As shown in Fig. 4, plots
deviate upward from the fitted line in the smaller diam-
cter range. However, the extent of deviation is much
smaller compared with the monodisperse model (Ookawara
and Ogawa, 2000). This is because large u,” (C,) value
caused by large Cy value of smallest portion moves the
plot rightward to fitting line that must pass through fixed
point, viz., 0.000894 at D,=0. Therefore, it can be said
that newly introduced term u,” (Cy) expands the appli-
cable range of the model compared with the monodis-
perse model.

Figure 5 shows the viscosity dependency at shear rate of
216.6 s™' on volume fraction in the range of 0.1 to 0.3 for
quartz particles, whose average diameter range is 27 to
181.5 um. Substitution of these known values for param-
cters in Eq. (17) yields Eq. (20) as follows.

i = 0.000894 +k,[(2,580)(216.6)(27.5x 107
x1.55---181.5x107°x 1.05)|C* (20)
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Fig. 4. Viscosity increase with corrected diameter D, u," (Cy) for
quartz particle suspensions. (p,=2,580 kg/m'; C=0.05-
0.30; y=216.6s" 4=0.000894 Pa-s).

Table 4(a). The values of parameter k, [mm] calculated based on
the viscosity dependency shown in Fig. 5

ky [mm] ky [mm] ky [mm}
Doluml 010020 010025 C:0.10030
27 #2.09 281 530
64.5 *1.77 217 459
90 152 %1.90 327
128 1.44 %176 3.26
181.5 1.83 %178 2.77

Table 4(b). The values of k obtained by assuming monodisperse
distribution (Ookawara and Ogawa, 2000)

k [mm] k [mm} k [mm]
D, [um] C:0.10-0.20 C:0.10-0.25 C:0.10-0.30
27 325 435 8.21
64.5 1.88 2.30 4.87
90 1.59 2.00 342
128 1.54 1.89 3.49
181.5 1.92 1.87 291

Since it seems that viscosity dependency on volume frac-
tion varies gradually and viscosity increases exponentially
rather than proportionally to the square of volume fraction,
especially in the higher range, curve fit is examined in
three different ranges, viz., 0.10-0.20, 0.10-025 and 0.10-
0.30, respectively. The comparison of Eq. (20) with the
results of curve fit gives &y value for each average diameter
and fitting range as listed in Table 4(a). Coefficients for the
monodisperse model are also listed in Table 4 (b) for the
comparison. As shown in Table 4(a), similar values marked
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Fig. 5. Viscosity increase with volume fraction for quartz particle

suspensions. (p,=2,580 kg/m®; ¥=216.6s"; D, u," (Cy)=
(27)(1.55)-(181.5)(1.05) pum; 1,=0.000894 Pas).

by asterisk can be seen in different columns. For diameter
of 27.5 and 64.5, the values fitted in the volume fraction
range of 0.10 to 0.20, are similar to the marked values
listed in Tables 2 and 3. For the diameter range of 90 to
181.5 um, on the other hand, proper values appear when
curve fit is performed in the volume fraction range of 0.10
to 0.25. The fact implies that the upper limit of valid vol-
ume fraction range is raised with average diameter. Further,
it can be seen for the smallest portion that ky value marked
by # in Table 4(a) is much improved compared with a cor-
responding value in Table 4(b). This improvement is
achieved by the large u,’ (Cy) value caused by large Cy
value. Therefore, it can be emphasized again that newly
introduced term u,” (Cy) expands the applicable range of
the model compared with the monodisperse model.

3.2. Suspension of sphere particle that consist of
glass or polymethlmethacrylate

Figure 6 shows the viscosity dependency at shear rate of
327.7 s on volume fraction in the range of 0.05 to 0.45 for
sphere particles, whose diameter and density range is 64.5
um and 1,168 to 2,960 kg/m’, respectively. Substitution of
these known values for parameters in Eq. (17) yields Eq.
(21) as follows.

i = 0.000894
+ky[(1,168+-2,960)(327.7)(64.5x 107°)(1.06)]C°  (21)

Referring to applicable volume fraction range for quartz
particles and the values listed in the following Table 6 to
obtain similar ky, values as much as possible, curve fit is
performed in the volume fraction range of 0.05 to 0.25.
The comparison of Eq. (21) with the results of curve fit

40
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Fig. 6. Viscosity increase with volume fraction for sphere par-
ticle suspensions. (p,=1,168-2,960 kg/m®; y=327.7s7";
D,y (C)=(64.5)(1.06) nm; 1=0.000894 Pa-s).

Table 5. The values of parameter k, [mm] calculated based on the
viscosity dependency shown in Fig. 6

P [kg/mS] ky [mm]
1,168 1
2,360 *1.24
2,960 *1.28

Table 6. The values of parameter k, [mm] calculated based on the
viscosity dependency shown in Fig. 7

ClLl ky [mm]
0.05 571
0.10 1.75
0.15 *1.42
0.20 *1.16
0.25 *1.25
0.30 *1.41
0.40 *1.31
0.45 1.70

gives ky value for each density as listed in Table 5. Since
the value of u,” (Cy) is constant in this case, ky is simply
1.06 times as k for the monodisperse model. It can be seen
that marked k, values for density of 2,360 and 2,960 kg/m’
are similar to each other, but much smaller than values for
quartz particles. In Figs. 6 and 7, solid lines are drawn by
using ky, which is average of &, values marked by asterisk
in Tables 5 and 6, and the value is 0.00130 m in this study.

Figure 7 shows the viscosity dependency at shear rate of
327.7 s™' on particle density in the volume fraction range of
0.05 to 0.45 for sphere particles, whose average diameter is
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Fig. 7. Viscosity increase with volume fraction for sphere particle
suspensions. (¥=327.7s™"; D,- i, (Cy)=(64.5)(1.06) um;
C=0.05-0.45; 1,=0.000894 Pa-s).

€4.5 um. Substitution of these known values for param-
eters in Eq. (17) yields Eq. (22) as follows.

4= 0.000894
+ky[(327.7)(64.5% 10™°)(1.06)(0.05°---0.45%)1p,  (22)

The comparison of Eq. (22) with the results of curve fit
gives ky value for each density as listed in Table 6. Since
the value of y," (Cy) is also constant in this case, ky is sim-
ply 1.06 times as k for the monodisperse model. It can be
szen that marked ky, values are similar to each other in the
volume fraction range of 0.15 to 0.40 and to marked values
in Table 5.

3.3. Discussion

As shown in Figs. 3-5 and corresponding Tables 2, 3 and
4(a), it is confirmed that the model is valid for quartz par-
ticles, in the volume fraction range of 0.15 to 0.25, in the
s1ear rate range of 109.7 to 327.7 s and in the diameter
range of 27 to 181.5 um. For sphere particles, on the other
hand, it is verified that the model is valid in the volume
fraction range of 0.05 to 0.20 and in the density range of
2,360 to 2,960 kg/m3 as shown in Figs. 6 and 7 and cor-
rasponding Tables 5 and 6. Although these ranges are
almost same as those for the monodisperse model, a newly
introduced correction term u,” (Cy) definitely expands the
applicable diameter range and fitting is improved as shown
in Figs. 4 and 5. It should be noted, further, the plots are
fitted well even out of above mentioned ranges. It is sug-
gested, therefore, the model is practically applicable not
only in the confirmed range, but also over the broader
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range by using the particular &y value, which is valid only
in the particular narrow range.

4. Conclusion

In this study, it is assumed that particle size distribution
of any portion obtained through screening is practically
uniform. Therefore, a new relation between parameters of
the uniform distribution, viz., average diameter and coef-
ficient of variation, and the flow characteristics of sus-
pension is derived based on the continuous polydisperse
model (Ookawara and Ogawa, 2002b). The derived model
equation predicts a linear increase of viscosity with shear
rate, viz., dilatant flow characteristics. Further, the increase
of viscosity is expected to be proportional to the square of
volume fraction of particles, and to show the linear depen-
dency on density and average diameter of particles. It is
also shown that the uniform distribution model includes
additional term that expresses the effect of distribution
width. For verification of the model, experimental results
of Clarke (1967) are cited as well as in our previous work
for the monodisperse model (Ookawara and Ogawa, 2000)
since most parameters were varied independently in his
work. Curve fits to those data based on the model deter-
mined experimental constants for each condition. Some of
them are similar to each other in particular experimental
ranges. In this study, it is concluded that those are the very
ranges in which the model is valid practically. Further, it is
confirmed that a unique value of the constant, which is
average of aforementioned similar values, could correlate
the viscosity dependency on all factors in the ranges. It is
also verified that the newly introduced term expands the
applicable range compared with the monodisperse model.
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