Emulsifying Properties of Whey Protein Hydrolysates

유청 단백질 가수분해물의 유화특성

  • 양희진 (성균관대학교 식품·생명자원학과) ;
  • 이수원 (성균관대학교 식품·생명자원학과)
  • Published : 2003.03.01

Abstract

This experiment was carried out to study changes in solubility and emulsifying properties of whey protein. Whey protein hydrolysates were obtained from tryptic hydrolysis of whey protein concentrate at pH 8.0 and 37$^{\circ}C$ for 6 hours. Emulsifying activity of whey protein hydrolysate was highest at 4 hours of hydroysis and at 5.50% of DH. During hydrolysis of whey protein concentrate with trypsin, ${\alpha}$-lactalbumin was not easily broken down. But ${\beta}$-lactoglobulin was hydrolysed rapidly from the early stage of hydrolysis, producing several low molecular weight peptides, which have to participate in increasing emusifying activity. The solulbility of hydyolysates tended to increase depending on hydrolysis time; however, there was a gradual decrease after 5 hours. The hydrolysate had a minimum solubility near the isoelectric point range (pH 4∼5). The more hydrolysed the whey protein concentrates, the more soluble they are near the pl. They aye also more soluble above pH 6. Emulsifying activity of hydrolysates showed similar results to solubility. Creaming stability gradually increased when hydrolysis increased, increasing rapidly above pH 8 after 4 hours of hydrolysis.

본 연구는 단백질분해효소로 whey protein을 가수분해하여 얻은 가수분해물의 용해도와 유화특성의 변화를 측정하기 위해 실시하였다. Whey protein concentrates를 porcine trypsin(E : S=1 ; 3,000)으로 pH 8.0, 37$^{\circ}C$에서 6시간 동안 가수분해한 whey protein 가수분해물의 유화활성은 분해 4시간째에 가장 높게 나타났으며, 이 때 가수분해도는 5.50%이었다. whey protein의 효소가수분해로 whey protein 중의 $\alpha$-lactalbumin은 분해가 잘 일어나지 않으나 $\beta$-lactoglobulin은 분해 초기부터 급속히 분해되며 유화력 상승에 관여하는 여 러개의 저분자량 peptide를 생성하였다. 가수분해물의 용해도는 가수분해시간이 지남에 따라 증가세를 보이다가 5시간부터 조금씩 감소 추세를 보였으며, pH에 따라서는 등전점 부근인 pH4~5에서 용해도가 가장 낮았으나 가수분해시간이 증가함에 따라 이 부근의 용해도가 현저히 증가하였으며 pH 6이상에서는 pH가 증가함에 따라 용해도도 증가하였다. 유화활성은 용해도의 결과와 거의 비슷한 결과를 나타내었다. 유화 안정성은 분해시간이 지남에 따라 조금씩 증가함을 보여주었으나, 가수분해 4시간부터 pH 8 이상의 PH에서 급격한 증자를 나타내었다.

Keywords

References

  1. Adler-Nissen, J. (1976) Enzymatic hydrolysis of proteins for increased solubility. J. Agric. Food Chem. 24, 1090-1093 https://doi.org/10.1021/jf60208a021
  2. Alder-Nissen, J. (1979) Determination of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J. Agric. Food Chem. 27, 1256-1261 https://doi.org/10.1021/jf60226a042
  3. Adler-Nissen, J. and Olsen, H. S. (1979) In Functionatity and protein structure. Pour-El. (ed). Advances in Chemistry Series 92, American Chemical Society, Washington D.C., PP. 125-146
  4. AdIer-.Nissen, J., Eriksen, S., and Olsen, H. S. (1983) Improvement of the functionality of vegetable proteins by controlled enzymatic hydrolysis. In Plant proteins for human food ; Bodwell, C. E. and Petit, L., Nijhoff, M., and Junk, W. (eds.), The Hague., PP. 207- 219
  5. Alder-Nissen, J. (1986) Enzymic hydrolysis of food proteins. Elsevier Applied Science Publishers. New York
  6. Bertrand-Harb, C., Baday, A., Dalgalarrondo, M., Chobert, J. M., and Haertle, T. (2002) Thermal modifications of structure and co-denaturation of $\alpha$ -lactalbumin and $\beta$-lactoglobulin inducechanges of solubility and susceptibility to proteases. Nahrune. 46,283-289 https://doi.org/10.1002/1521-3803(20020701)46:4<283::AID-FOOD283>3.0.CO;2-A
  7. Britten, M., Giroux, H. J., and Gaudin, V. (1994) Effect of pH during heat processing of partially hydrolyzed whey protein. J. Dairy Sci. 11, 676-84
  8. Chobert, J. M., Bertrand-Herb, C., and Nicolas, M. G. (1988a) Solubility and emulsifying properties of caseins and whey proteins modified enzymatically by trypsin. J. Asric. Food Chem. 36, 883-892 https://doi.org/10.1021/jf00083a002
  9. Chobert, J. M., Sitohy, M. Z., and Whitaker, J. R. (1988b)Solubility and emulsifying properties of caseins modified enzy-matically by Staphylococcus aureus V8 protease. J. Asric. Food Chem. 36, 220-224 https://doi.org/10.1021/jf00079a055
  10. De Wit, J. N. and Klarenbeek, G. (1984) Effect of various heat treatments of structure and solubility of whey proteins. J. Dairy Sci. 67, 2701-2711 https://doi.org/10.3168/jds.S0022-0302(84)81628-8
  11. Fox, P. F., Morrissey, P. A., and Mulvihill, D. M. (1982) Chemical and enzymatic modification of food proteins. In Developments in Food Proteins-l. Hudson, B. J. F.(ed.), Applied Science, London, pp. 1-.60
  12. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227, 680-685 https://doi.org/10.1038/227680a0
  13. Lee, S. W. and Kim, J. W. (1992) Effect of enzymatic hydrolysis on emulsifying properties of casein. Korean J. Dairy Sci. 14, 184-191
  14. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. S. (1951) Protein measurement with the folin phenol reagent. J. Binl. Chem. 193, 265-275
  15. Olsen, H. S. and Adler-Nissen, J. (1979) Industrial production and applications of a soluble enzymatic hydrolyzate of soya protcin. Process Biochem. 14, 6-11
  16. Pearce, N. K. and Kinsella, J. E. (1978) Emulsifying properties of proteins : Evalution of a turbidimetric technique. J. Agric. Food Chem. 26, 716-723 https://doi.org/10.1021/jf60217a041
  17. Ribadeau-Dumas, B. (1988) Structure and variability of milk proteins. In Mitk proteins: nutritional, clinical, functional and techtiolosical aspects. Barth, C. A. and Schilmme, E.(ed.), Sprin-ger Verlag, New York
  18. Shimizu, M., Lee, S. W., Kaminogawa, S., and Yamauch, K. (1986) Functional properties of a peptide of $\alpha_{s1}$-casein : changes in the emulsifying activity during purification of the peptide. J. Food Sci. 51 1248-1252 https://doi.org/10.1111/j.1365-2621.1986.tb13097.x