Determination of Critical State Parameters in Sandy Soils from Standard Triaxial Testing (II) : Experiment and Recommendation

표준삼축시험으로부터 사질토에서의 한계상태정수 결정에 관한 연구 (II) : 실험 및 추천

  • Published : 2003.02.01

Abstract

A set of standard triaxial testing was performed to identify underlying physical processes and inherent limitations in the determination of critical state parameters in sandy soils. The experimental test results showed that the critical state friction angle for a given soil is constant regardless of drainage condition while the critical state line on the e-log p'space is significantly affected by drainage condition mainly because of insufficient strain attained in standard triaxial tests and strain localization effects in udrained tests. It appeared that the best method to determine critical state parameters in laboratory testing is to use homogeneous loose specimens under drained shear condition. In addition, a reference state parameter was suggested to design tests that will avoid dilatancy or strain localization effects in drained tests.

사질토에서의 한계상태정수 결정시 근본적인 물리적 과정들과 고유적 인 한계성들을 파악하기 위하여 일련의 표준삼축시험을 실시하였다. 시험결과에 의하면, 주어진 흙에 대하여 한계상태마찰각은 배수조건에 상관없이 일정한 반면에, e-log p'공간상에서의 한계상태선은 주로 표준삼축시험에서 충분치 못하게 도달하는 변형률과 비배수시험에서의 변형률 국지화효과 때문에 배수조건에 따라 다른 결과를 보였다. 실내시험을 통하여 한계상태정수를 산정하는 최선의 방법은 균일하고 느슨하게 성형된 시료를 배수조건하에서 전단하는 것으로 나타났다. 더불어 배수시험에서 다일러턴 시효과나 변형률 국지화효과를 피할 수 있는 시험을 계획하기 위한 참고상태정수를 제시하였다.

Keywords

References

  1. Journal of Geotechnical Engineering v.114 no.2 Undrained monotonic and cyclic strength of sand Alarcon-Guzman, A.;Leonards, G. A.;Chameau, J. L. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:10(1089)
  2. 1st Mallet-Milen Lecture, Journal of Earthquake Engineering and Structural Dynamics v.17B Engineering seismology Ambraseys, N. M.
  3. Geotechnique v.35 no.2 A state parameter for sands Been, K.;Jefferies, M. G. https://doi.org/10.1680/geot.1985.35.2.99
  4. Geotechnique v.41 no.3 The critical state of sands Been, K.;Jefferies, M. G.;Hachey, J. https://doi.org/10.1680/geot.1991.41.3.365
  5. Geotechnique v.2 no.1 Discussion: Measurement of the shear strength of soils Bishop, A. W.
  6. Geotechnique v.4 no.1 Correspondence on shear characteristics of a saturated silt measured in triaxial compression Bishop, A. W. https://doi.org/10.1680/geot.1954.4.1.43
  7. The 5th Panamerican conference on Soil Mechanics and Foundation Engineering v.5 Liquefaction and cyclic deformation of sands a critical review Casagrande, A.
  8. Harvard Soil Mechanics Series 88 Liquefaction and cyclic mobility of sands: a criticaal review Casagrande, A.
  9. Ph.D. thesis, Harvaed Soil Mechanics series no.81 Liquefaction of sands Castro, G.
  10. TJ11-74, State Captial Construction Commission Peoples Republic of China Earthquake-resistant design code for industrial and civil buildings Chinese building code;A. C. S. Chang (trans.)
  11. Geotechnical Testiong Journal, GTJODJ v.6 no.1 On the measurement of critical state parameters of dense granular soils Chu, J.;Lo., S. C. R.
  12. Ph. D. Thesis, Georgia Institute of Technology Unsaturated Soil Stiffness and Post-Liquefaction Shear Strength Cho, G. C.
  13. Evaluation of relative denfity and its role in geotechnical projects involving cohesionless soils, ASTM STP 523 Prediction of drained strength of sands from relative density measurements Cornforth, D. H.
  14. Geotechnique v.46 no.3 Void ratio evolution inside shear bands in traxial sand specomens studied by computed tomography Desruse, J.;Chambon, R.;Mokin, M.;Mazerolle, F. https://doi.org/10.1680/geot.1996.46.3.529
  15. National Bureau of Standards, NBS Building Science Series 138 Prediction of pore water pressure buildup and liquefzction of sands during earthquakes by the cyclic strain method Dobry, R.;Ladd, R. S.;Yokel, F. Y.;Chung, R. M.;Powell, F.
  16. Developments in Geotechmical Engineering no.30 Mechanics of particulate materials Feda, J.
  17. Ground Failures under Seismic Conditions, Geotechnical Special Publication 44, Liquefaction in silty soils: Design and analysis Finn, W. D. L.;Ledbetter, R. H.;Wu, G.
  18. Engineering Geology v.28 Some factors affecting the liquefaction and flow of saturated sands in laboratory tests Hird, C. C.;Hassona, F. A. K. https://doi.org/10.1016/0013-7952(90)90039-4
  19. Geotechnique v.43 no.3 The Rankine Lecture: Liquefaction and flow failure during earthquakes Ishihara, K. https://doi.org/10.1680/geot.1993.43.3.351
  20. Journal of Geotechnical Engineering v.116 no.6 Minimum undrained strength versus steadystate strenfth of sands Konrad, J. M. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:6(948)
  21. Geotechnical Earthquake Engineering Kramer, S. L.
  22. Journal of Geotechnical Engineering v.122 no.2 Undrained sand behavior in axisymmetric tests at high pressures Lade, P. V.;Yamamuro, J. A. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:2(120)
  23. Journal of Geotechnical Engineering v.114 no.4 Regression models for evaluating liquefaction probability Liao, S. S. C.;Veneziano, D.;Whitman, R. V. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:4(389)
  24. Ph. D. Thesis, Georgia Institute of Tehcology A Critical Assessment of Moist Tamping and Its Effect on the Initial and Evolving Structure of Dilatant Triaxial Specimens Park, J. Y.
  25. Journal of Geotechnical Engineering v.107 no.GT5 The steady state of deformation Poulos, S. J.
  26. Journal of Geotechnical Engineering v.111 no.6 Liquefaction evaluation procedure Poulos, S. J.;Castro, G.;France, J. W. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:6(772)
  27. Journal of Geotechnical and Geoenvironmental Engineering v.123 no.3 Factors affecting apparent position of Steady-state line Riemer, M. F.;Seed, B. R. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:3(281)
  28. Journal of Geotechnical Engineering v.111 no.GT3 Liquefaction potential of sands using the CPT Robertson, P. K.;Campanella, R. G. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(384)
  29. Geotechnical Testing Journal v.24 no.2 Determination of critical state parameters in sandy soils-Simple procedure Santamarina, J. C.;Cho, G. C. https://doi.org/10.1520/GTJ11338J
  30. Journal of the Geotechnical Engineering Division v.105 no.GT2 Soil liquefaction and cyclic mobility evaluation for level during earthquakes Seed, H. B.
  31. Journal of the Soil Mechanics and Foundation Division, ASCE v.97 no.SM9 Simplified procedure for evaluating soil liquefaction potential Seed, H. B.;Idriss, I. M.
  32. Journal of Geotechnical Engineering v.109 no.GT3 Evaluation of liquefaction potential using field performance data Seed, H. B.;Idriss, I. M.;Arango, I. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(458)
  33. Journal of Aerospace Engineering v.11 no.3 Mechanics of granular materials at low effective stresses Sture, S.;Costes, N. C.;Batiste, S.;Lankton, M. R.;AlShibli, K. A.;Jeremic, B.;Swanson, R. A.;Frank, M. https://doi.org/10.1061/(ASCE)0893-1321(1998)11:3(67)
  34. Foundamentals of Soil Mechanics Taylor, D. W.
  35. Discussion, Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering v.25 no.3 Effect of static shear on resistance to liquefaction Vaid, Y. P.;Chern, J. C.
  36. Soils and Foundins v.36 no.2 The steady state of sandy soils Verdugo, R.;Ishihara, K. https://doi.org/10.3208/sandf.36.2_81
  37. Some findings in soil liquefaction Water Conservancy and Hydroelectric Power Scientific Research Institute Wang, W.
  38. Soil behavior and critical state soil mechanics Wood, D. M.
  39. Proceeding of 4th International Conference on Seismic Zonation v.1 Mapping of earthquake-induced liquefaction for seismic zonation Youd, T. L.
  40. Proceeding of 6th World Conference on Earkquake Engineering v.3 Liquefaction susceptibility and geologic Engineering Youd, T. L.;Hoose, S. N.
  41. Proceedings of NCEER Workshop on Evaluation of Liquefaction Resistance of Soild, Technical Report NCEER-97-0022 Youd, T. L.;Idriss, I. M.
  42. Proceedings of the 7th World Conference on Earthquake Engineering v.3 Evaluation of the liquefaction of sand by static cone penetration test Zhou, S.