Purification and Characterization of Arylphorin of the Chinese Oak Silkmoth, Antheraea pernyi

  • Park, Snag-Bong (Department of Sericultural and Entomological Biology, Faculty of Agriculture, Miryang National University) ;
  • Kim, Jeong-Wha (Department of Agri-Biology, College of Agriculture, Chungbuk National University) ;
  • Kim, Soohyun (Biomolexule Research Team, Korea Basic Science Institute) ;
  • Park, Nam-Sook (College of Natural Resources and Life Science, Dong-A University) ;
  • Jin, Byung-Rae (College of Natural Resources and Life Science, Dong-A University) ;
  • Hwang, Jae-Sam (Department of Sericulture and Entomolog, National Institute of Agricultural Science and Technology) ;
  • Seong, Su-Il (College of Natrual Science, the University of Suwon) ;
  • Lee, Bong-Hee (Graduate School of Biotechnology, Korea University) ;
  • Park, Eunju (Division of Life Science, Kyung Nam University)
  • Published : 2003.03.01

Abstract

The arylphorin was purified from the pupal haemolymph of the Chinese oak silkmoth, Antheraea pernyi, and characterized physiologically and biochemically, The protein was purified by a simple preparative polyacrylamide gel electrophoresis (PAGE) and subsequent diffusive elution. The preparation was shown to be homogeneous by 7.5% native-PAGE. The native molecular weight of arylphorin was 450 kDa with a 80 kDa single subunit, suggesting hexamer, The protein contained high amounts (18.3%) of aromatic amino acids, phenylalanine (9.7%) and tyrosine (8.6%). Therefore, the protein was identified as a kind of a storage protein referred to as an arylphorin. The protein was stained by Schiff's reagent, suggesting a glycoprotein. The protein contained 4.9% (w/w) sugar and mannose and N-acetylglucosamine were major components. Also, degradation of the protein was begun by heat treatment at 90 for 20 minutes. These results showed that the A. pernyi arylphorin in the study is hexamer associated with the six subunits consisting of a 80kDa single subunit, and is different from that of Kajiura et al. (1998) in the subunit composition.

Keywords

References

  1. Ancsin, J. B. and G. B. Wyatt (1996) Purification and characterization of two storage proteins from Locusta migratoria showing distinct developmental and hormonal regulation. Insect Biochem. MoI. Biol. 26, 501-510 https://doi.org/10.1016/0965-1748(96)00005-7
  2. Bean, D. W. and D. Silhacek (1989) Changes in the titer of the female-predominant storage protein (81k) during larval and pupal development of the wax moth, Gafleria melloneIIa. Arch. Insect Biochem. PhysioI. 10, 333-34 https://doi.org/10.1002/arch.940100408
  3. Beverley, S. and A. Wilson (1982) Molecular evolution in Drosophita and higher Diptera. I. Micro-complement hexation studies of a larval hemolymph protein. J. Mot. EvoI. 18,251-264
  4. Bigge, J. C., T. P. Patel, J. A. Bruce, P. N. Goulding, S. M. Charles and R. B. Parekh (1995) Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. AnaI Biochem. 230, 229-23 https://doi.org/10.1006/abio.1995.1468
  5. Brock, H. and D. Roberts (1983) An immunological and electrophoretic study of the larval serum proteins of Drosophila species, Insect Biochem. 13, 57-63 https://doi.org/10.1016/0020-1790(83)90064-1
  6. Burmester T. and K. Scheller (1992) Identification of binding proteins involved in the stage-specific uptake of arylphorin by the fat body cells of Calliphora vicina. Insect Biochem. Mol.Biol.22,211-220 https://doi.org/10.1016/0965-1748(92)90057-L
  7. Burmester T. and K. Scheller (1995a) Ecdysteroid-mediated uptake of arylphorin by larval fat bodies of CaUiphora vicina : involvement and developmental regulation of arylphorin binding proteins, Insect Biochem. MoI. Biol. 25, 799-80 https://doi.org/10.1016/0965-1748(95)00017-P
  8. Burmester T. and K. Scheller (1995b) Complete cDNA sequence of the receptor responsible for arylphorin uptake by larval fat body of the blowfly CaUiphora vicina. Insect Biochem. Mol.Biol. 25, 981-989 https://doi.org/10.1016/0965-1748(95)00028-T
  9. Burmester T., U. Matzner and K. Scheller (1995) Effect of 20-hydroxyecdysone on synthesis and uptake of arylphonn by the larval fat body of CaIliphora vicina (Diptera; Calliphoridae). Eur. J. Entomol. 92, 217-227
  10. Butters, T. D. and R. C. Hughes (1978) Lectin binding to mosquito Aedes aeeyptii and human KKB cells: structural compahsons of membrane oligosaccharides. Carbohyd. Res. 61, 159-168 https://doi.org/10.1016/S0008-6215(00)84476-6
  11. Butters, T. D. and R. C. Hughes (1981) Isolation and characterization of mosquito cell membrane glycoproteins. Biochem. Biophs.Acta. 640, 655-671 https://doi.org/10.1016/0005-2736(81)90096-1
  12. Carpenter, D. and K. VanHolde (1973) Amino acid composition, amino terminal analysis, and subunit structure of Caneer magister hemocyanin. Biochemistry 12, 2231-2238. https://doi.org/10.1021/bi00736a008
  13. Cheon, H. M., I. H. Hwang, D. H. Chung and S. J. Seo (1998) Sequence analysis and expression ofmet-rich storage protein SP-l of Hyphantria cunea. Mol. Cells 8, 219-225
  14. Cheon, H. M., H. J. Kim, D. H. Chung, M. 0. Kim, J. S. Park, C. Y. Yun and S. J. Seo (2001) Local expression and distribution of a storage protein in the ovary of Hyphantria cunea. Archives of Insect Biochemistry and Physiology 48, 111-120 https://doi.org/10.1002/arch.1063
  15. Davidison, D. J., R. K. Bretthauer and F. J. Castellino (1991) a- Mannosidase-catalyzed trimming of high-mannose glycans in noninfected and baculovirus-infected Spodoptera frugiperda cells (IPLB-SF-21AE). A possible contributing regulatory mechanism for assembly of complex-type oligosac-charides in infected cells. Biochemistry 30, 9811-9815 https://doi.org/10.1021/bi00105a001
  16. Davidson, D. J. and F. J. CasteIIino (1991) Structures of the asparagine-289-linked oligosaccharides assembled on recombinant human plasminogen expressed in a Mamestra brassicae cell line (IZD-MB0503). Biochemistry 30, 6689-6696 https://doi.org/10.1021/bi00241a008
  17. Davis, B. J. (1964) Disc electrophoresis-: method and application to human serum proteins. Ann. New York Acad. Sci. 121, 404-427 https://doi.org/10.1111/j.1749-6632.1964.tb14213.x
  18. DeBianchi, A. G., 0. Marinotti, F. P. Espinoza-Firentes and S. 0. Pereira (1983) Purification and characterization of Musca domestica storage protein and its developmental profile. Comp. Biochem. PhvsioI. 76B, 861-867
  19. Duhamel, R. C. and J. G. Kunkel (1983) Cockroach larval-spe cific protein, a tyrosine-rich semm protein. J. BioI. Chem. 258, 14461-14465
  20. Ghiretti-Magaldi, A., C. Nuzzolo, F. Ghiretti (1966) Chemical studies on hemocyamns. I. Amino-acid composition. Bio- chemistry 5, 1943-1951 https://doi.org/10.1021/bi00870a022
  21. Guile, G. R., P. M. Rudd, D. R. Wing and R. A. Wing (1996) Arapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles. Anal. Biochem. 240, 210-226 https://doi.org/10.1006/abio.1996.0351
  22. Haunerland, N. H. (1996) Insect storage proteins: gene fami lies and receptors, Insect Biochem. MoI. Biol. 26, 755-765 https://doi.org/10.1016/S0965-1748(96)00035-5
  23. Haunerland, N. H. and W. S. Bowers (1986a) Arylphonn from the corn earworm, Heliothis z.ea. Insect Biochem. 16, 617-62 https://doi.org/10.1016/0020-1790(86)90004-1
  24. Haunerland, N. H. and W. S. Bowers (1986b) A larval specific lipoprotein; Purification, and characterization of a blue chromoprotein from Heliothis zea. Biophys. Biochem. Res. Commun. 134, 580-58 https://doi.org/10.1016/S0006-291X(86)80459-4
  25. Kajiura, Z., M. N. Yokoyama, M. Nagasaki and R. Takei(1998) Purification, developmental profile and biosynthesis of arylphorin in the wild silkmoth, Antheraea peryni. AppI. Entomol Zool. 33, 305313
  26. anost, M. R., J. K. Kawooya, J. H. Law, R. 0. Ryan, M. C. Van Heusden and R. Ziegler (1990) Insect haemolymph proteins. Adv. Insect Physiol. 22, 299-396 https://doi.org/10.1016/S0065-2806(08)60008-9
  27. Karpells, S., D. Leonard and J. Kunkel (1990) Cyclic fluctuations in arylphorin, the principal serum storage protein of Lymantria dispar, indicate multiple roles in development. Insect Biochem. 20, 73-82 https://doi.org/10.1016/0020-1790(90)90022-M
  28. Katsoris, P. and V. Marmaras (1979) Characterization of the major haemolymph proteins in Ceratitus capitata. Insect Biochem. 9, 503-50 https://doi.org/10.1016/0020-1790(79)90070-2
  29. Kelly, W. G. and G. W. Hart (1989) Glycosylation of chromosomal proteins: localization of O-linked N-acetylglucosamine in Drosophila chromatin. Cell 57, 243-251 https://doi.org/10.1016/0092-8674(89)90962-8
  30. Kim, K. M., J. Y. Moon, S. M. Lee and H. J. Yoon (1989) Studies on the purification and biochemical properties of vitellin in the Antheraea yamamai 1. Isolation and purification ofvitellin and its changes to embryonic development. Korean J. Seric.Sci. 31, 72-81
  31. Kim, S. H., S. K. Hwang, R. A. Dwek, P. M. Rudd, Y. H. Ahn, E. H. Kim, C. J. Cheong, S. I. Kim, N. S. Park and S. M. Lee (2003) Structural determination of the N-glycans of a lepidopteran arylphorm reveals the presence of a monoglucosy lated oligosaccharide in the storage protein. Gtycobiotogy In press
  32. King, T. and J. Jukes (1969) Nondarwmian evolution. Science 164, 788-789 https://doi.org/10.1126/science.164.3881.788
  33. Kinnear, J. and J. Thomson (1975) Nature, origin and fate of major haemolymph proteins in Cattiphora. Insect Biochem. 5,531-552 https://doi.org/10.1016/0020-1790(75)90036-0
  34. Kramer, S. J., E. C. Mundall and J. H. Law (1980a) Purification and properties of manducin, an ammo acid storage protein of the haemolymph of larval and pupal Manduca sexta. Insect Biochem. 10, 279-288 https://doi.org/10.1016/0020-1790(80)90023-2
  35. Kramer, S. J., E. C. Mundall and J. H. Law (1980b) Purification and properties of manducin, an amino acid storage protein of the haemolymph of larval and pupal Manduca sexta. Insect Biochem. 10, 279-288 https://doi.org/10.1016/0020-1790(80)90023-2
  36. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
  37. Lee, S. M. (1994) Physiological and biochemical charactehs tics of the adult major haemolymph protein of the silkworm, Bombyx mori. Thesis of Ph. D. Thesis, Seoul National University. Seoul, Korea
  38. Levenbook, L. (1985) Insect storage proteins; in Comprehen sive Insect Physiology, Biochemistry and PhamacoIogy (Vol. 10). Gillbert L. I. and G. A. Kerkut (eds.), PP. 307-346, Pergamon Press, Oxford
  39. Mannotti, 0. and A. G. deBianchi (1986) Uptake of storage protein by Musca domestica fat body. J. Insect PhysioI. 32, 819-825 https://doi.org/10.1016/0022-1910(86)90086-7
  40. Markl, J., R. Schmid, S. Czichos-Tiedt and B. Linzen (1976) Hemocyanins in spiders, Chemical and physical properties of the proteins in Dugesiella and Cupiennius blood. Hoppe-Seyter'sZ. PhysioI Chem. 357, 1713-1725
  41. Munn, E. A., A. Feinstein and G. D. Greville (1967) A major protein constituent of pupae of the blowfly CaIliphora erythrocephala (Diptera). Biochem. J. 102, 5 https://doi.org/10.1042/bj1020005C
  42. Munn, E. A. and G. D. Greville (1969) The soluble proteins of developing CaIIiphora erythrocephaIa, particularly calliphorin, and similar proteins in other insects. J. Insect Physiof. 15, 1935-1950 https://doi.org/10.1016/0022-1910(69)90023-7
  43. Palli, S. R. and M. Locke (1987) Purification and characterization of three major haemolymph proteins of an insect Catpodes ethlius (Lepidoptera, Hesperiidae). Arch. Insect Biochem. Physiol. 5, 233-24 https://doi.org/10.1002/arch.940050403
  44. Rimoldi, 0., J. Soulages, S. Gouzalez, F. Peluffo and R. Bremer (1989) Purification and properties of the very high density lipoprotein from the haemolymph of adult Triatoma infestans. J. LipidRes. 30, 857-864
  45. Roberts, D. B. and H. W. Brock (1981) The major semm proteins of dipteran larvae. Experientia 37, 103-110 https://doi.org/10.1007/BF01963174
  46. Roberts, D. B. (1983) The evolution of larval semm protein genes in Drosophila; in The larval Serum Proteins of Insects. Scheller, K. (ed.), pp. 86-101, Thieme, Stuttgart
  47. Ryan, R. 0., D. R. Anderson, W. J. Grimes and J. H. Law (1985a) Arylphorin from Manduca sexta: carbohydrate structure and immunological studies. Arch. Biochem. Biophys.243, 115-124 https://doi.org/10.1016/0003-9861(85)90779-9
  48. Ryan, R. 0., J. 0. Schmidt and J. H. Law (1984) Arylphorin from the haemolymph of the larval honeybee, Apis mettifera. Insect Biochem. 14, 515-520 https://doi.org/10.1016/0020-1790(84)90005-2
  49. Ryan, R. 0., P. S. Keim, M. A. Wells and J. H. Law (1985b) Purification and properties of a predominantly female specific protein from the haemolymph of the larva of the tobacco homworm, Manduca sexta. J. Biol. Chem. 260, 782-786
  50. H. Law (1986a) Lipoprotein interconversions in an insect, Manduca sexta. Evidence for a lipid transfer factor in the hemolymph. J. Biol. Chem, 261, 563-568
  51. Ryan, R. 0., X. Y. Wang, E. Willot and J. H. Law (1986b) Majorhaemolymph proteins from larvae of the black swal-lowtail butterfly, Papitio poIyxenes. Arch. Insect Bichem. Physiol. 3, 539-550 https://doi.org/10.1002/arch.940030605
  52. Seo, S. J., Y. J. Kang, H. M. Cheon, H. R. Kim (1998) Distribution and accumulation of storage protein-1 in ovary of Hyphantria cunea drury. Arch. Insect Biochem. PhysioI. 37, 115-128 https://doi.org/10.1002/(SICI)1520-6327(1998)37:2<115::AID-ARCH1>3.0.CO;2-T
  53. Shimada, T., M. Nagata and N. Yoshitake (1987) Charcterization of arylphohn of the Eri-silkmoth, Samia cynthia ricini (Donovan) (Lepidoptera: Satumiidae) Appt. Ent. Zool. 22, 543-552 https://doi.org/10.1303/aez.22.543
  54. Shirras, A. D. and M. Bownes (1989) Cricklet: A locus regulating a number of adult functions of Drosophita meIanogaster. Proc. Natl. Acad. Sci. USA 86, 4559-4563 https://doi.org/10.1073/pnas.86.12.4559
  55. Silhacek, D. and D. Bean (1988) Storage protein physiology in Gatteria mellonella. Cymborowski, B., I. Sehnal and A. Zabza (eds.), PP. 1007-1011, Wroclaw Unl. Press Wroclaw, Poland.
  56. Swahn, B. (1953) Studies on blood lipids. Scan. J. Ctin. & Lab. Invest. 5, SuppI 9
  57. Tefler, W. H. and J. G. Kunkel (1991) The function and evolution of insect storage hexamers. Annu. Rev. Ent. 36, 205-228 https://doi.org/10.1146/annurev.en.36.010191.001225
  58. Telfer, W. H., P. S. Keim and J. H. Law (1983) Arylphorin, a new protein from Hyatophora cecropia: comparisons with Calliphorin and Manducin. Insect Biochem. 13, 601-613 https://doi.org/10.1016/0020-1790(83)90034-3
  59. Tojo, S., M. Nagata and M. Kobayashi (1980) Storage proteins in the silkworm, Bombyx mori. Insect Biochem. 10, 289-303 https://doi.org/10.1016/0020-1790(80)90024-4
  60. Tojo, S. and T. Yoshiga (1993) Purification and characterization of three storage proteins in the common cutworm, Spodoptera litura. Insect Biochem. Mol. Biol. 23, 729-738 https://doi.org/10.1016/0965-1748(93)90047-V
  61. Wyatt, G. R. and M. L. Pan (1978) Insect plasma proteins. Ann. Rev. Biochem. 47, 779-817 https://doi.org/10.1146/annurev.bi.47.070178.004023
  62. Weber, K. and M. Osbom (1969) The reliability of molecular weight determination by dodecyl sulfate-polyacrylamide gel electrophoresis. J. BioI Chem. 244, 4406-4412
  63. Wolfe, J., M. E. Akam and D. B. Roberts (1977) Biochemical and immunological studies on larval semm protein I, the major haemolymph protein of Drosophita melanogaster third-instar larvae. Eur. J. Biochem. 79, 47-53 https://doi.org/10.1111/j.1432-1033.1977.tb11782.x
  64. Zacharius, R. M., T. E. Zell, J. H. Morrison and J. J. Woodlock (1969) Glycoprotein staining following electrophoresis on acrylamide gels. Anatyt. Biochem. 30, 148-15 https://doi.org/10.1016/0003-2697(69)90383-2