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Implicit Learning with Artificial Grammar
. Simulations using EPAM IV
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Abstract In implicit learning tasks, human participants learn grammatical letter strings better than
random letter strings. After learning grammatical letter strings, participants were able to judge the
grammaticality of new letter strings that they have never seen before. EPAM (Elementary Perceiver
and Memorizer) IV, a rote learner without any rule abstraction mechanism, was used to simulate
these results. The results showed that EPAM IV with a within-item chunking function was able to
learn grammatical letter strings better than random letter strings and discriminate grammatical letter
strings from non-grammatical letter strings. The success of EPAM IV in simulating human
performance strongly indicated that recognition memory based on chunking plays a critical role in

implicit learning.
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I. Introduction

People are sensitive to the regularities and patterns in
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the world. Research on implicit learning has tried to explain
how people become sensitive to the underlying rules of the
letter strings generated by artificial grammars. The key to
answering this question lies in the form of knowledge
acquired during implicit learning. Several researchers have
proposed that recognition memory underlies human
participants' performance in implicit learning tasks. For
example, Miller [9] proposed that chunks are formed when
participants  memorize  grammatical  letter  strings.
Servan-Scriber and Anderson [18] also proposed that
implicit learning involves a form of chunking and that
grammatical judgments are performed based on a hierarchical
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network of chunks [see also 3, 10]. On the other hand, other
researchers believed that some sort of rule abstraction
occurs during implicit learning. For example, Reber [11}
proposed that there exists an unconscious co-variation
detection process that yields non-verbalizable, abstract, and
grammatical knowledge. The process was likened to the
language acquisition process during which abstract rules (Le.,
grammars) are acquired through repeated exposure to
linguistic stimuli. It was proposed that as children acquire
grammar, people implicitly abstract the underlying rules of
the letter strings when they are repeatedly exposed to them
[7, 11, 12, & 14].

What is the form of knowledge acquired during implicit
learning that allows people to discriminate grammatical
from non-grammatical strings? Do human participants
abstract rules, or do they simply store examples during
learning? This question has been difficult to answer
because even when people abstract rules, they often store
information about the examples. In addition, even if people
simply stored examples during implicit learning, rules can
be abstracted based on the examples stored in memory
when they were informed about the existence of the rules
and asked to perform the grammatical judgment task.
Separating the processes of rule abstraction and exemplar
storage has been a difficult job because they are closely
interconnected in human minds. This paper attempted to
answer this question by simulating human implicit learning
performance using EPAM (Elementary Perceiver And
Memorizer) IV. EPAM IV is a pure rote learning system
that does not have any rule abstraction mechanism. It onty
learns to recognize and to associate stimuli presented to
it. If a rote learning system such as EPAM IV could
simulate human performance in implicit learning tasks, it
would suggest that implicit learning is based on the
memory of the examples rather than the rules abstracted
during learning. Conversely, if EPAM IV fails to simulate
human performance, it would suggest that human
participants' performance probably requires more than the
stored memories of the examples.

1I. Human Performance: Results from
Reber (1967)

This paper reports on the EPAM IV's simulation of human

S

Figure 1. The finite state

grammar used
grammatical letter strings in this study. It is identical to the

to generate

one used in Reber except for the mappings of the letters.

performance reported in Reber [11]. He generated a set of
letter strings using a finite-state grammar (see Figure 1).
These letter strings were called grammatical letter strings
and were of 6 to 8 letters in length. He also generated
random letter strings that did not follow any rules, but
consisted of the same letters used to generate grammatical
letter strings (.e., P, S, T, V, & X). The length of the random
letter strings were made slightly shorter than the
grammatical letter strings from 4 to 6 letters in lengthl(see
Table 1 for the grammatical letter strings and random letter
strings used in this study). In Experiment 1, he asked
participants to study grammatical letter strings in the
experimental condition and random letter strings in the
control condition. The letter strings were presented in seven
sets of four letter strings in each condition. In the given set,
each letter string was presented one by one for 5 seconds.
Afterwards, participants were asked to write down all the
letter strings in the set. They repeated this procedure untit
they reached a criterion of two consecutive correct
reproductions of the set. Participants in both conditions
showed a big initial drop in errors, but only participants in
the experimental condition showed a consistent decline in

errors, whereas the errors in the

1) Random letter strings contain more information than
grammatical letter strings. This makes it more difficult to
learn the random strings than grammatical strings. The
length of the random strings was held to 4, 5, and 6 letters
in order to make their information value equivalent to that
of the grammatical letter strings. See Reber [10] and Miller
[9] for more details on the information value of the
grammatical and random strings.
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Figure 2. Mean number of errors to criterion on each of the seven
learning sets in Experiment 1 of Reber (1967). S, represents
participants' performance in the experimental condition where they
studied grammatical letter strings, and Sr represents participants'
performance in the control condition where they studied random

letter strings.

control group did not show such a consistent decline after
the initial drop (see Figure 2).

In Experiment 2, Reber [11] first asked participants
to study a set of grammatical letter strings as in
Experiment 1. Afterwards, he told participants that the
letter strings they just studied were formed by a set of
grammatical rules. Although participants were informed
about the existence of the rules, no further information
was given about the rules themselves. Participants were
merely told to consider the letter strings as
grammatically permissible examples, Participants were
then given a transfer task «called grammaticality
judgment task or well-formedness task, in which they
were provided with a set of new letter strings and
asked to judge whether these strings were grammatical
(i.e., they are formed by the same rules used to create
the study strings) or non-grammatical (.e., they violate
Participants judged

these rules)?,

2) This task can be considered as a near transfer task. A far
transfer task would be a task where human participant learn with
strings expressed in one letter set and then make grammaticality
judgments on items made up using a different letter set as was
in Reber [12].

Table 1. Letter strings used in the simulation of learning

Grammatical letter
strings S
PTTTVV /PXTVPS
by s
TSSS8XS TSSKXVV TSSSXXVV
TSXXVV TSKXVES TSSXXTVV
TXXVPS TSRXTVY TSXXTVPS
PTTTTVV TXXTTV,V TSXXTTVV
PTTTVPS TRXTVES TXXVPXVV
PTVPXVV PITITVES TXXTTVPS
PVPXTVV PITVPXVY TXXTTTVY
PTVPXTVV
PVPXVPS
Random letter
strings
VTSV PXVPS XPVXPT
TTVT SSSSP XSXSPS
TSVS VVVPS PXXPTV
TSXS SXVPS XVXSST
SSST PXXPT VXPTPT
TTPVS PVVVP VSPSXX
PSTPS XTSTPS XSXPST
SSPVS SVTVPX VVTPTT
TPSXT PXPVXT VVTXTV
ESVSV

grammatical letter strings as grammatical 78% of the
time and judged non-grammatical letter strings as
grammatical 21% of the time. This means that they
were able to discriminate grammatical letter strings
from ungrammatical letter strings even though they
were new letter strings that they had never seen before
(see also Reber [13]: Reber & Lewis [15]). What was
simulated in this study were these two results reported
in Reber (1967): (a) better learning of the grammatical
letter strings than random letter strings and (b) ability
to discriminate grammatical letter strings from random
letter strings.

Il Simulations with EPAM IV

EPAM is a system built on a theory of human

perception and memory processes. It was first
programmed for a computer by E. A. Feigenbaum in
1959 and has demonstrated an excellent fit with
experimental data from a wide variety of psychological

tasks. EPAM describes and explains a wide range of



4 gt A Heke] =822 A 14 A A1 &

human perceptual and memory processes. The
phenomena surrounding verbal learning were selected
and tried at first, but the program has been gradually
extended to include other tasks. EPAM has been used
successfully to account for the observed effects in
paired-associate or serial anticipation verbal learning
paradigms, speed of presentation of stimuli, inter-list and
intra-list similarity, familiarization, one-trial versus
multi-trial learning, and so forth. Although EPAM has
been used to model mostly verbal learning in a standard
experimental paradigm so far, in principle, it can be used
to model a wide variety of phenomena such as
categorization or conceptual learning tasks similar to
implicit learning tasks examined in this article (see [4,
17] for more information on EPAM IV). Over the years,
EPAM has undergone several revisions and has been
progressively extended to new tasks and domains. The
modifications made to EPAM over the years reflect the
strategic learning that allows it to perform new tasks and
did not significantly alter its basic mechanisms. The
current version, EPAM 1V, is a version extended to
account for expert memory and was used to simulate
human implicit learning performance in this study.

The EPAM theory was developed to identify a basic
set of mechanisms that would give a unified account of
diverse perceptual and memory phenomena. From
EPAM'S first versions to the present one, the core of
the EPAM's system consists of a small short-term
memory storage that can hold a few familiar chunks of
knowledge and a long-term semantic memory accessed
from a structure called discrimination net. The
discrimination net is a tree structure in which the top
node in a net, the root node, is the ancestor of all the
nodes below it. The top node has children, and its
children have children, all the way down to the leaf
nodes at the bottom of the net. Leaf nodes have no
children of their own, but link the net to semantic
interface between the

memory, serving as an

discrimination net and semantic memory. The
successive nodes in the discrimination net contain tests
on the values of the stimulus attributes that select the
subsequent node to which it will be passed (e.g., 'Is
this letter T?). A leaf node contains no tests, but

instead stores an image of the stimulus together with

links to structures in semantic memory that contain
additional information about it.

When EPAM3) learns new items, it adds new nodes in
the discrimination net. Both LTM and the discrimination
net expand and are modified by learning processes, where
the role of the discrimination nets is to provide a growing
"index" that gives access to semantic memory in LTM.
EPAM is capable of two kinds of learning: (a) it learns
to recognize new stimuli and to discriminate among
stimuli previously judged to be the same by adding new
tests and branches to its discrimination net and (b) it
stores new information about stimuli by elaborating the
images at leaf nodes and the associative structure in
LTM. When an object from the outside world is
recognized, EPAM sorts it through the net using tests that
are associated with each node, performing a series of
tests till it reaches a leaf node.

lll.a. Simulations of Learning

When EPAM 1V studies a new stimulus, it builds
discrimination nets. When the discrimination net for the
given set of letter string is completed, its study routine
returns to nil. Thus, in simulations using EPAM, it was
assumed that EPAM IV studied the stimulus to the
level ‘equivalent to the learning criterion of two

consecutive correct reproductions used in Reber
(1967) when its study routine returns zero. In addition,
EPAM records the number of routines and learning
time to complete the net in the EPAM-clock. Thus, the
number of routines and learning time in the EPAM
IV-clock until EPAM IV completed the net on each set
was used as a measure of learning. The results
showed that with grammatical letter strings, EPAM IV
took 89 seconds (8 study routines) to complete the
net on the first set, but 63 sec (6 routines) on the
second set. With random strings, EPAM IV took 63 sec
(9 routines) on the first set, but 58 sec (6 routines)
on the second set (see Figure 3). Thus, as was In
human data, EPAM IV showed an initial improvement
with both types of stimuli.

Although EPAM 1V provided a decent approximation

3) Note that the term EPAM is used without version information,
it is used in a generic sense and do not indicate a specific
version of EPAM in this paper.
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to human performance, its performance was not
satisfactory. EPAM did not show much improvement
after the initial drop. In addition, there was no overall
advantage of grammatical letter strings over random
letter strings: EPAM IV took more time and more
study routines to learn the grammatical letter strings
over seven sets (a total of 420 sec and 43 routines)
than the random letter strings (a total of 378 sec and
41 routines). Thus, it seems that pure rote learning, as
was implemented in EPAM IV at the time, was not
enough to simulate the advantage that grammatical
letter strings have over random letter strings.
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Figure 3. EPAM's study routine and learning time in simulation
1 without PARSE.

One of the key characteristics of human memory is
chunking [1, 2]. The idea of chunking was first

introduced by Miller [8]. Chunking is a grouping
process by which nearby letter strings or numbers are
grouped together. For example, the 26 letters of the
alphabet are often encoded into seven chunks: abed, efg,
hijk, Imnop, qrst, uvw, and xyz [6]. Chunking is a
natural (perhaps automatic) tendency to process stimuli
by parts. Once chunks are formed, people treat them as
if they were one item. The same thing may happen
when people study letter strings used in implicit
learning tasks. Although the grammar such as the one
in Figure 1 is quite difficult to figure out, some of the
patterns in the grammatical letter strings become
noticeable after human participants are repeatedly
exposed to the letter strings. People often report
noticing repetition of letters (e.g., VVV or SSSSS) or
some familiar sequence of letters in the string (e.g.,
VPS). Several researchers have pointed out the
importance of such bigram and trigram frequencies [3,
10, & 18]. Although EPAM IV has a capacity to handle
chunking through a LTM structure called retrieval
structure, it does not have a mechanism to deal with
this type of within—item chunking. The failure of EPAM
IV to simulate human performance to a satisfactory
level might be due to EPAM IV's lack of within—item
chunking. If this were the case, a chunking procedure
that identifies familiar letter sequences in the string
would improve EPAM IV's performance.

To test this idea, a simple loop called PARSE was
added (see Appendix). PARSE performs preliminary
chunking, grouping adjacent identical letters in the string
(e.g., VVV or SS). Once it chunks a sequence, EPAM IV
puts it in a separate leaf node. When EPAM IV
encounters the same sequence in another letter string
later, EPAM does not need to build the image again. It
only needs to point to the node where the chunk is
stored. When PARSE was used with the same stimuli and
procedures, EPAM's learning pattern changed. As was in
the previous simulation, there was an initial improvement
from set 1 to set 2 in both grammatical and random letter
strings. The size of improvement, however, became
bigger this time. In addition, EPAM IV showed a
consistent improvement till the last study set with
grammatical letter strings, but not with random letter
strings (see Figure 4). As a result, the overall learning
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time was shorter with the grammatical letter strings than
with the random letter strings this time. In total, EPAM
IV took 427 sec (43 routines) to learn the grammatical
letter strings, but 455 sec (45 routines) to learn the
random letter strings.

c N A& O ©
T

Figure 4. EPAM's study routine and learning time in simulation
1' with PARSE.

Although PARSE was quite primitive, it improved
EPAM 1V's performance substantially. EPAM IV was
able to simulate Reber's [11] results that demonstrated
that people learned grammatical letter strings better
than random letter strings. Since EPAM IV operates on
simple recognition memory with a primitive chunking
procedure, the success of EPAM [V strongly support
the hypothesis that people store examples rather than
abstract rules during implicit learning.

il.b. Simulation of Grammaticality Judgment.

This section reports on EPAM IV's performance of
the grammaticality judgment task. When EPAM
recognizes something, it sorts stimuli through its
discrimination net in order to gain access to the
information about them that is stored in long—term
semantic memory. When EPAM IV reaches the leaf
node, it puts its content into a chunk box. The
recognition process in EPAM is by no means perfect.
EPAM IV can point a leaf node in response to a new
test string, fals_ely recognizing it as an old item. In
simulating grammaticality judgment task, a criterion of
judging grammatical to test strings that pass ali the
tests and goes down to the leaf node and
non—grammatical to the rest of the test strings was
adopted. The frequency of which EPAM IV pointed a
leaf node in response to new letter strings and the
number of tests EPAM IV performed to recognize
transfer letter strings were used as measures of
recognition memory, because if a test item is more
familiar to EPAM IV, EPAM IV performs more tests to
recognize it.

After EPAM learned the study items in the same way
as it did in the previous simulation with PARSE, EPAM
was presented with test strings that were never studied
before. Half of the test items were formed by the same
grammar used to create the learning items, and the other
half were constructed by taking 22 grammatical letter
strings and replacing one letter with a letter that would
make the string non—grammatical (The construction of
non—grammatical letter strings followed the procedure in
Reber & Lewis [15] because they provided more explicit
criterion than Reber [11]; see Table 2). EPAM IV
produced more leaf nodes in response to the grammatical
test strings (12 leaf node out of 22 responses) than to
the non—grammatical test strings (8 out of 22),
demonstrating 60% of correct response rate. EPAM IV
also performed more tests to recognize a test item when
it was grammatical (4.27 test per an item) than when
it was non—grammatical (3.96 test per an item).
Although the size of the effect was not as large as in
experimental studies that have shown a 70% and above
correct response rate {11, 13], note that the actual
outcome of the grammaticality judgment task depends on
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Table 2. Letter strings used in the simulation of grammaticality
judgment

Letter strings used in learning

PVV PVPXVV TSXXVPS
TXS TSSSXS PTVPXTVV
TXSX PTTTVPS PVPXTVPS
PTVPS PVPXVPS TSSSSSXS
PTTTVV TSSXXVV TXXVPXVV
Grammatical test letter strings

;3:5‘/ PTVPXVV PTTVPXVV
PTTVV PVPXTVV TSSSXXVV
TSSXS TSSSSXS TSSXXTVV
TXXVV TSXXTVV TSXXTVPS
TSXXVV TXXTTVV TSXXTTVV
TXXVES TXXTVPS TXXTTVPS
PITTTVV PTTTTVPS TXXTTTVV
Ungrammatical test letter strings®

TPXS TXXTVS TSSSSXV
PTXVV TVPXVPS PTSXXVPS
PTVSS PSXXTVV TXPTTVPS
TTTVOS PXPXTVV TSXXPTVV
TPXXVV PPTTVPS TSSPSSXS
PTSVPS TSSSPXS PTTTTVXS
PTTVXS PVPXTPS PVPXTTVS
‘TSSPXS

* Offending letter is underlined.

the decision criterion and strategies adopted. With a less
stringent criterion, EPAM's performance would improve
further. In addition, more important than the size of the
effect is the existence of the effect in the right direction.
The results of the simulation showed that it was possible
to demonstrate the advantage of grammatical letter
strings purely based on recognition memory, suggesting
that recognition memory alone was sufficient to explain
human participants' performance in a grammaticality
judgment task.

V. Discussion

One of the major questions in implicit learning
literature has been the form of knowledge learned
during implicit learning, that is, whether rules are
abstracted or whether examples f(or fragments of

examples) are stored. It has been difficult to establish
reliably whether human participants rely on complex
rules or memory of examples during the grammaticality
judgment task. Because EPAM IV is a rote learner that
does not have any capability to abstract rules, it can
serve as a useful tool in investigating whether any kind
of rule abstraction is involved in implicit learning. In
this study, with the help from the preliminary
within—item chunking procedure that groups adjacent
identical letter strings together, EPAM IV successfully
simulated human performance both at learning and in
the grammaticality judgment task. EPAM was able to
study grammatical letter strings faster than random
letter strings and to differentiate grammatical and
non—grammatical test strings based on recognition
memory. Thus, the success of EPAM IV, along with
the simulation by Servan—Schreiber & Anderson {18],
supports the idea that recognition memory based on
chunking is sufficient to explain human performance in
implicit learning tasks (3, 18]. This kind of result is in
line with human experimental results that indicate that
the stored memories of examples are involved in
implicit learning, especially memory of the fragments
or chunks [5, 16].

The success of EPAM IV in simulating human data
does not constitute sufficient proof of the theoretical
mechanisms behind it since a given set of data can be
accounted for by a number of theories or models.
However, this problem is inherent in any model or
theory building. The results from this study and other
similar work should be considered as converging
evidence supporting memory based theories of implicit
learning processes.
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Appendix: PARSE

parse ]
(defun parse (object)
"groups adjacent and same letter together (study (parse object) *net*)"
(loop for tail on (cdr object)
with type = (get-value object 'type)
with new—object = nil
for last—letter = nil then current-letter
for current—letter = (first tail)
if (eq current—letter last—letter)
do (cond ((atom {(car new-—object))
(let (Qittle=list (list nil (car new~object) current—letter)))
(put—value little—list type 'type)
(setf new—object {cons little—list {(cdr new—object}))))
(else (setf new—object (cons (append (car new—object) (lost current-
letter))
(cdr new—object)))))
else do (setf new—abject (cons current-letter new—object))
finally (return (cons (dar object) (reverse new-—object)))))




