Abstract
The analysis of cow body parameters is important to provide some useful information fur cow management and cow evaluation. Present methods give many stresses to cows because they are invasive and constrain cow postures during measurement of body parameters. This study was conducted to develop the stereo vision system fur non-invasive analysis of cow body features. Body feature parameters of 16 heads at two farms(A, B) were measured using scales and nineteen stereo images of them with walking postures were captured under outdoor illumination. In this study, the camera calibration and inverse perspective transformation technique was established fer the stereo vision system. Two calibration results were presented for farm A and fm B, respectively because setup distances from camera to cow were 510 cm at farm A and 630cm at farm B. Calibration error values fer the stereo vision system were within 2 cm for farm A and less than 4.9 cm for farm B. Eleven feature points of cow body were extracted on stereo images interactively and five assistant points were determined by computer program. 3D world coordinates for these 15 points were calculated by computer program and also used for calculation of cow body parameters such as withers height. pelvic arch height. body length. slope body length. chest depth and chest width. Measured errors for body parameters were less than 10% for most cows. For a few cow. measured errors for slope body length and chest width were more than 10% due to searching errors fer their feature points at inside-body positions. Equation for chest girth estimated by chest depth and chest width was presented. Maximum of estimated error fur chest girth was within 10% of real values and mean value of estimated error was 8.2cm. The analysis of cow body parameters using stereo vision system were successful although body shape on the binocular stereo image was distorted due to cow movements.