초록
Over the last decade fiber-reinforced polymer (FRP) reinforcement consisting of glass, carbon, or aramid fibers embedded in a resin such as vinyl ester, epoxy, or polyester has emerged as one of the most promising and affordable solutions to the corrosion problems of steel reinforcement in structural concrete. But reinforcing rebar for concrete made of FRP rebar has linear elastic behavior up to tensile failure. For safety a certain plastic strain and an elongation greater than 3% at maximum load is usually required for steel reinforcement in concrete structures. The same should be required for FRP rebar. Thus, the main object of this study was to develop new type of hybrid FRP rebar Also, this study was evaluated to the mechanical properties of Hybrid FRP rebar. The Manufacture of the hybrid FRP rebar was achieved by pultrusion, and braiding and filament winding techniques. Tensile and interlaminar shear test results of Hybrid FRP rebar can provide its excellent tensile strength-strain behavior and interlaminar stress-strain behavior.