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CONSISTENCY AND ASYMPTOTIC NORMALITY OF A
MODIFIED LIKELIHOOD APPROACH CONTINUAL
REASSESSMENT METHOD!

SEUNG-HO KANG!

ABSTRACT

The continual reassessment method (CRM) provides a Bayesian estima-
tion of the maximum tolerated dose (MTD) in phase I clinical trials. The
CRM has been proposed as an alternative design of the standard design.
The CRM has been modified to improve practical feasibility and, recently,
the likelihood approach CRM has been proposed. In this paper we inves-
tigate the consistency and asymptotic normality of the modified likelihood
approach CRM in which the maximum likelihood estimate is used instead of
the posterior mean. Small-sample properties of the consistency is examined
using complete enumeration. Both the asymptotic results and their small-
sample properties show that the modified CRML outperforms the standard
design.

AMS 2000 subject classifications. Primary 62P10; Secondary 62L15.
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1. INTRODUCTION

Phase I studies are experiments whose aim is to determine rapidly the maxi-
mum tolerated dose (MTD) of a new drug for use in a subsequent phase II trials.
In the field of haematology and oncology, the studies are characterized by the
high potential toxicity of a new drug at any dose required to be effective, so
that they are conducted in patients. From ethical reason the number of patients
should be minimized. Although the standard design is widely used in practice,
much of the recent literature reports that the standard design has very poor op-
erating characteristics compared with the continual reassessment method (Faries,
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1994; O’Quigley and Chevret, 1991; O’Quigley et al., 1990; Goodman et al., 1995;
Moller, 1995; Ahn, 1998). One problem with the standard design is that many
patients are treated at low dose levels. Another problem is the large variability
of the estimated MTD around the true MTD. The major criticism of the stan-
dard design is that it has no interpretation as an estimate of the dose level which
yields a specified toxicity rate. In particular, Kang and Ahn (2001) investigated
this criticism extensively. They computed the expected toxicity rate at the MTD
in the standard design by assuming three families of dose-toxicity functions (the
logistic, hyperbolic tangent and power functions). They cautiously argued that
the expected toxicity rate at the MTD in the standard design is between 17%
and 21% if the dose-toxicity curve is S-shaped and the toxicity rates is very small
in low dose levels. Their results shows inflexibility of the standard design well.

O’Quigley et al. (1990) proposed the continual reassessment method (CRM),
in which reduces the number of patients treated with possibly ineffective dose
levels. The starting dose of the CRM is selected to be the prior estimate of
the MTD. When toxicity outcomes are known for successive patients, the dose-
toxicity curve is updated and used to determine the dose at which to treat the
next patient. A main advantage of the CRM is that, for a given target toxicity
rate 0 < 6 < 1, the toxicity rate at the MTD obtained from the CRM converges
to 6 as the sample size increases.

Although the CRM outperforms the standard design, the original CRM has
some difficulties to be implemented in real practice. One of them is that it takes
too long to complete the trial, because the CRM treat one patient at a time.
Goodman et al. (1995) proposed the modified CRM that assigns more than one
patient at a time to each dose level and limits the dose escalation one level.
Another modification is that the starting dose of the modified CRM is the lowest
dose level, not the prior estimate of the MTD. This modification makes clinicians
more comfortable, probably because undertreating is viewed less seriously than
overtreating. They showed that the modified CRM reduces the duration of the
trial by 50-67 percent, reduces a toxicity incidence by 20-35 percent, and lowers
toxicity severity from the original CRM.

Although the original and modified CRM have nice statistical properties, the
two CRM are not widely used by clinicians, because clinicians are not familar with
a Bayesian approach. O’Quigley and Shen (1996) proposed a new version of CRM,
called likelihood approach CRM (CRML), in which the maximum likelihood es-
timate is used instead of the posterior mean. In this paper, we will introduce the
modified CRML and investigate the consistency and asymptotic normality for the
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maximum likelihood estimates in the modified CRML. In phase I clinical trials
small-sample properties of a statistical procedure is very important, because the
number of patients used in phase I clinical trials hardly exceeds 20. In this paper,
especially, we investigate if the expected toxicity rate at the MTD converges to
the target toxicity well in small-samples using complete enumeration. Since sim-
ulation has been used to investigate small-sample properties in phase I clinical
trials, complete enumeration is a new research tool. With complete enumeration
150 hyperbolic tangent dose-toxicity functions are examined extensively.

2. REVIEW

We review the modified likelihood approach CRM (CRML) with group inclu-
sion which will be investigated in this paper. Let x,,z2,...,z; denote the dose
levels chosen for experiment. Let € be the probability of toxic response corre-
sponding to the aimed target dose level. Each cohort consists of three patients
and let Y;=(Y;1,Y52,Yi3) (: = 1,...,n) be a random vector for the response of
the i** cohort. The binary random variable Yj;, | = 1,2,3, takes on 1 for toxic
response and 0 for non-toxic response.

Let X take values z1,..., 2, and stands for the dose level used for an exper-
iment. We denote Y;; by Y for simplicity. We assume that the true dose-toxicity
function generating the data is given by

P(Y =1|X =z) = R(x).

In particular, let R; = P(Y = 1|X = z;), ( = 1,...,k). We are interested
in estimating the dose level zy at which R(zg) equals a target probability 6.
However, R(zg) does not have to be equal to 8y exactly. It will be enough to find
the dose level among 1, ...,z at which the toxicity probability is the closet to
6g.

Consider some simple dose-response function for F(Y) and denote this by
U(z(i),a) where z(i) denote the dose level chosen for the i*® cohort of three
patient and a is an unknown parameter. The modified CRML is performed as
follows.

1. A mathematical model ¥(z(3), a) for dose-toxicity is proposed (or assumed).
The hyperbolic tangent has been employed in many studies (Faries, 1994;
0O’Quigley and Chevret, 1991; O’Quigley et al., 1990; Goodman et al., 1995;
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Moller, 1995; Ahn, 199§).

B(a(i)0) = (D L)

. Define 6, aimed target toxicity level.
. Assign the first cohort in the lowest dose level.

. The likelihood will only have solutions at a = 0 or @ = oo when all responses

are either toxicities or nontoxicities. So we perform the standard design
until we have a small set of heterogeneous responses. The standard design
is described as follows. Three patients are assigned at the first dose. We
proceed to the next higher dose level with a cohort of three patients until
at least one patient experiences the toxicity. If we observe three toxicities
at the first dose, we stop the trial, because in real practice dose levels are
lowered for adjustment and a new trial is conducted.

Suppose that we obtain heterogeneous responses in the m** cohort.

. The maximum likelihood estimate a,, of a is obtained using

(z(1),...,z(m), Y1, .., Ym).

. Find a dose level which is closet to 8, i.e.,

{200 101 0m) — 01 = min 9(z;,dm) — 61}

We take z(m + 1) = z; in the original CRM. It sometimes allows the
possibility of escalating more than one dose level after having treated a
few patient at some low dose levels. This raises concern about whether
patients will be treated at too toxic dose levels. In the modified CRML, a
conservative approach is employed. Dosages can not increase by more than
one level at a time, although there are no restrictions on dosage decreases.
In other words,

— 1>,
1) =
z(m+1) { 2, <l +1,

where z;+ = z(m).
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7. Assign the next cohort to the dose level z(m + 1) and observe Yy, and
the likelihood is updated.

8. We repeat step 4, 5 and 6 until we reach a predetermined fixed sample size
3n (i.e., n cohorts). The recommended dose is the dose which is determined
in the step 6 of the last cohort.

To perform the above modified CRML, first, we need to obtain the likelihood.
After we observe the n'* cohort, the likelihood is given as follows. Since the
modified CRML is a sequential design, z(2),z(3),...,z(n) and Y3, Y3, ..., Y,
are random. z(1) is constant, because z(1) is the lowest dose level. Since X;
conditional on (Y7,...,Y;—1,z(1),...,z(i — 1)) is deterministic and Y; depends
only on z(z), not on previous outcomes or doses, we have

P(HYJ-, m(j)>
Jj=1 j

7j=1
n—1 n n-—1 n—1 n—1 n—1
= P(Ynl Y;, []=() xP(m(n)l HYj,H:L‘(j)> xP(H)fJ,HJE(g))
7j=1 7j=1 j=1 7=1 i=1 j=1
n i—1 i i—1 i—1
:P(Yl,x(n)H{P Y; HYj,Hx(j)) xP(xu)\ HYJ,Hx(J))
=2 j=1 j=1 j=1 j=1
n 1—1 n
= P(¥1,2(1)) HP(& Y;»Hz(j))
i=2 j=1  j=1
- HP(Yz :c(i))
i=1
——H_L (1 ayi - (). a 3—y;
=g Vet {1 - ¥(at.0)}

where y; = 0, Y.

3. RESuLT

The modified CRML begins once we have observed some heterogeneity in the
response. Define

k
nozinf{k:0<2yi<3k}.

=1



38 SEUNG-Ho KANG

Then nyg is the first time that both toxicities and nontoxicities are observed and
therefore the maximum likelihood estimate can be calculated.
Let

V(z,a) = %\Il(a:, a).

For k > ng, the maximum likelihood estimate aj, solves the equation

k '
> {0 (a(i),0) + (3 — ) ;g a(i).a) } =0,

We will show that a; will converge to ag in the modified CRML where ¥(zg, ap) =
0.

For asymptotic results we need the following assumptions.
(C1) For each a, function ¥(-, a) is strictly increasing.

(C2) Function ¥(z,-) is continuous and is strictly monotone in a in the same
direction for all z.

(C3) For each 0 < t < 3 and each z, the function

!

s(t,z,a) = t%(x,a) +(3-1)

1——\11\1/ (z,0)
1s continuous and is strictly in a.

(C4) The parameter a belongs to a finite interval [A, B].

(C5) The target dose level is g, that is, R(zg) = 6.

(C6) The probabilities of toxicities at xq,. ..,z satisfy 0 < Ry < --- < Ry < 1.
LEMMA 3.1. If (C6) holds, then P(ng < o0) = 1.

PROOF. Let S; = le{yi — 3R(z(¢))}. Then S; is a martingale from
E(y;) = 3R(x()). Since y; — 3R(x(¢)) is bounded, the limit theorem for martin-
gale shows that k=15, tends to zero almost surely. From (C6),

1<i< -

k
i < kL E ) < . < 3.
0< min 3R; <k 2 3R(z(1)) < 11;1%)(’0 3R, <3

If we replace k=1 3°F | 3R(z(3)) by k' % 4, 1 < Sy < 3(k — 1) for suffi-
ciently large n. It then follows that P(ng < oo) = 1. O
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The above lemma guarantees that it is possible to calculate the maximum
likelihood estimate after a certain point.

We model the unknown true dose-toxicity function R(z) with ¥(z,a). Since
R(zg) = 6, zo is the dose level that we would like to find. Note that, from
U(zp,a0) = 8, ag is the value of the parameter a with which ¥(zg,a) produces
the target toxic probability 8. Therefore, when a = ag, ideally, we hope that
U(z;,a0) = R; for i = 1,...,k. But, it is very unlikely for this to be true
in real situation. In order to establish the asymptotic consistency, we need to
require that the unknown true dose-toxicity function R(z) is not too different
from the assumed model ¥(z,a). We introduce the following set to characterize
the difference

S ={a: |¥(zo,a) — R(z0)| < |¥(z;,a) — R(zg)|, for all z; # zo}.

From (C1)~(C7), S is an open interval. We need the following extra condition
to establish the asymptotic consistency.

(C7) Fori=1,...,k,a; € S.

THEOREM 3.1. Under (C1) to (C7), for sufficiently large n, we have a, —
ag and z(n+1) — xo almost surely, where a,, is the mazimum likelihood estimate
of the parameter a, and z(n + 1) is the recommended dose level for the next
experiment when n patients finish ezperiments.

PrOOF. We assume that the first n experiments are conducted at z(1),
z(2),...,z(n) and the responses are y1,ys, ..., Y. Let I,(a) be the loglikelihood.

@) =™ S {uy eli).a) + 3 - 0) g @) |
i=]

We will show that

sup [In(a) —I,(a)] >0 asn— oo (3.1)
a€[A,B}
where
nfa) =17 Y [3R((9) G (o(0).0) + 3 ~ 3R} (@(0)0)

i=1

Since for each dose level z;, (¥'/¥)(z;,-) and [¥'/(1— ¥)](z;,-) are bounded and
continuous in a over the finite interval [A, B], the two functions are uniformly
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continuous in a over [A, B]. Then for given € > 0 and for each z;, we can take a
partition A =tg < t; < --- < ty = B such that, for any a € [t;, {;4+1),

o’ v’
‘a(:rj,a)-—a-(:c]—,tl) <€, l=0,1,...,k—1, (3.2)
N o’
}m(z],a)—l—jﬁ(m],n) < €, l:—O,l,,k)—l (33)

Since there are only m possible dose levels, we can take the partition such that
(3.2) and (3.3) are valid for all z;. We decompose I,(a) — I,,(a) into the sum of
three pieces: I1(a), Ino and I,3(a), where

na(0) = (@) = 3 {0, + (3 = 0) g 00 )}
i=1

ha = Y- = 3R F 60,0 + a0}
i=1

n

(o) = 3 [3R(e(0) { Fa(0t) - e, }

i=1

+3 = 3R} g a0 - 0,0}

From Eq. (3.2) and (3.3),

sup |Ini(a)l = sup |Ihi(a)] for some [t,,t, + 1) in the partition
a€[A,B] a€ltr,tr+1)

1 n
- Z{yie + (3 — yi)e} = 3e.
=1

IA

Similarly,
sup |In3(a)] < 3e.
a€[A,B]

For fixed ¢;, {nIn2 : » > 1} is a martingale. Since the terms in I, are bounded,
I,2 converges to 0 almost surely from the limit theorem for martingales. Hence,
we obtain (3.1).

Let S; denote the finite interval [min{ay,...,ar}, max{a;,...,ax}]. From
(CT7), 8; C S. Rewrite I,,(a) as follows.
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!

k . Q!
fn(a) = Z @i {3R(:Ei)—?ll—(a:i, a)+ (3 — 3R(mi))%(azi, a)} (3.4)

where 0 < w; < n is the frequency that the level z; has been used by the first n
experiments. Since ¥(z;,a;) = R;, for each 1 <1 < k, (C3) implies that

! !

3R(zi) 5 (@i ai) + (3 - 3R($i))1;_5(:vi, a;) =0. (3.5)
Let &, be the solution to equation I,(a) = 0. Since I,(@,) = 0 can be regarded
as an weighted average of (3.5), from (C2), @, must fall into the interval S;.
Since S} C S and é,, solves In(a) = 0, (3.1) implies that a, € S almost surely for
sufficiently large n. Then, &, satisfies

| (zg,dn) — 0] < |¥(z4,8n) — 6|, fori=1,...,k x;#xp.

Hence, z(n+1) = g for sufficiently large n. Note that the change of deciding the
next recommended dose level in finite sample does not influence on the asymptotic
results. Hence, we start with the experiments with the ordinary CRM. That is,
the next recommended dose level is the dose such that (z; — \Ifgnl)2 is minimized.
After sufficiently large n, we add the constraint that dosages can not increase
by more than one level at a time. However, this constraint does not change the
asymptotic results, because z(n + 1) = z; for sufficiently large n. So, z(n+1) —
Zg as n — oo in the modified likelihood approach CRM.

All w;/n in (3.4) tends to zero as n goes to infinity, except one level which
is the same as zp. Thus, @, being the solution for (3.4), will converge to the
solution of the following equation:

3R(20) g, (z0,0) + (3 — 3R(20)) - (z0,) = 0.

Since ag is the solution of the above equation, a, — ap as n — oo from (3.1).
This finishes the proof. a

THEOREM 3.2. Under the conditions of Theorem 3.1,
V(i — ag) -5 N(0,02)

where 02 = (V'(zg,a0))200(1 — 69)/3 and ay, is the mazimum likelihood estimate

of a.
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PROOF. Since there is only a finite number of dose levels, z(n) = =z for
sufficiently large n. Thus the asymptotic distribution of &, is the same as that

of the solution of

Z {yi%—,(mo, a)+ (3 —yi) 1—_\1,\;, (zo, a)} =0.

i=1

The asymptotic normality of d,, follows from standard theory of maximum like-
lihood estimators, because (zg,y1),.- -, (Z0,Yn) are independent and identically
distributed. The asymptotic variance is given by

o = [ [ {2 w00+ 6 -0 g enan)} ap

= [/ {yﬂ%@ +(3 —y)————_q;,(ftzoao)rdp —

{(550)" 0+ (H25) 0o

-1

I

6o
-1
‘I"(ﬂﬂo,ao) —‘1’1(330,&0) .2
+2< % > ( - )E(3y y )}
_ (' (20, a0))?60(1 — o)

3 from y ~ B(3,0p).

4. SMALL-SAMPLE PROPERTIES

First, we investigate P(ng < oo) = 1. When R, is the probability of toxicity
at the dose level z;, let p; = P(y; = 1,2|R;) and ¢; = P(y; = 0,3|R;). The
probability of observing first heterogeneous responses in the i** cohort is given

by
1—1
p; = [[ wip:-
i=1

The probability that heterogeneous responses are observed among the first r
cohorts in the standard design, that is, > ;_, p}, is investigated by assuming the
hyperbolic tangent function as the true dose-toxicity curve. Table 4.1 shows the
results. As the number of cohort increases, the probability converges to 1 rapidly.
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We investigate the expected toxicity rate at the MTD in the modified CRML,
because it reflects the small-sample behavior of consistency. In most previous
studies on CRM a few dose-toxicity curves were chosen and investigations were
done by simulations. However, in this paper we employ an exact method based
on complete enumeration. The exact method does not produce any sampling
error which usually exists in simulation studies. Furthermore, since the comput-
ing time is saved with the exact method, hundreds of dose-toxicity curves that
belong to the same family of increasing functions can be investigated within a
few seconds. The maximum likelihood estimate ax’s are computed using IMSL.
In this paper the hyperbolic tangent dose-toxicity functions are investigated, be-
cause the functions have been popular models in the investigation of CRM. The
20% and 30% toxicity rates are chosen. The number of cohort is restricted by 7,
because 7 x 3 = 21 patients would be large enough for practical phase I cancer
clinical trials. After we obtain the exact distribution of MTD based on complete
enumeration, we compute the expected toxicity rate at the MTD and investigate
how the expected toxicity rate at the MTD is close to the target toxicity rate.
Since the number of cohort is restricted by 7, there are 47 all possible cases. It
is straightforward to generate 47 all possible cases on computer and compute the
maximum likelihood estimates and the next dose level.

The hyperbolic tangent and the logistic functions have been used frequently in
studies of phase I clinical trials. Since the performance of the continual reassess-
ment method in these two family of functions are similar in other studies (Kang
and Ahn, 2001; Kang, 2002), in this paper we assume the hyperbolic tangent
functions as the true dose-toxicity functions which are given by

U(z;,a) = (—“—tanh(;i) h 1)‘1

where z; = —14 +0.25(t — 1), 1 < ¢ < 7, and @ is the unknown param-
eter. The toxicity rates in each dose level are displayed in Table 4.2 when
a = 0.5,0.75,1.0,1.5 and 2.0. When a = 0.5,0.75,1.0,1.5 and 2.0, the curves
are plotted in the left corner of Figure 4.1. The curves have the almost identical
shapes and are just shifted to the right as the value of a increases. The case of
a = 0.5 represents a case of either toxicity that is too high even at low dose levels,
or a dose level that is too high as an initial dose level. The case of a = 2.0 repre-
sents quite a steep dose-toxicity curve, but its toxicity rates never exceed those of
a = 0.5. Tt is thought that the hyperbolic tangent dose-toxicity functions in the
range of 0.05 < a < 2.0 are large enough to cover most practical unknown dose-
toxicity functions. The exact distribution of the MTD when a = 0.5,0.75,1.0,1.5
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and 2.0 are computed and presented in Table 4.3. The expected toxicity rate
at the MTD is calculated for each value of 0.5 < ¢ < 2.0 with the increment of
0.01 and plotted in right corner of Figure 4.1. The broken and the solid lines
correspond to 30% and 20% toxicity rate, respectively. As the value of a changes
in the range of 0.5 < a < 2.0, we can see that the expected toxicity rates at the
MTD are pretty close to either 30% or 20%, respectively. From these results we
can conclude that consistency of MLE in the modified CRML is well preserved
in small samples.

TABLE 4.1 The probabilities of heterogeneous responses

number of a
cohorts 05 (075 | 1.0 1.5 2.0
1 054 [ 031 | 0.16 | 0.04 | 0.01
2 0.87 | 0.68 | 0.47 | 0.19 | 0.07
3 097 | 091 [ 0.81 | 0.53 | 0.31
4 099 | 097 | 095 | 0.87 | 0.75
5 0.99 | 098 { 098 | 0.96 | 0.93
6 0.99 | 0.99 |{ 0.98 | 0.97 | 0.96
7 099 { 099 [ 0.99 | 0.97 | 0.97

TABLE 4.2 Tozicity rates of hyperbolic tangent functions

¥(zi;a) = {(tanh(z;) + 1)/2}°

a

dose T; 05 | 075 | 1.0 1.5 2.0
1 —-1.40 | 23.9 | 11.7 5.7 1.4 0.3

—-0.90 | 37.7 | 23.1 | 14.2 5.3 2.0

—0.40 | 55.7 | 41.5 | 31.0 | 17.3 9.6
0.10 | 74.2 | 63.9 | 55.0 | 40.8 | 30.2
0.60 | 87.7 | 82.1 | 76.9 | 674 | 59.1
1.10 | 949 [ 924 | 90.0 | 854 | 81.0
1.60 | 98.0 | 97.0 | 96.1 | 94.2 | 92.3

NSO e W

The major criticism of the standard design is that it has no interpretation as
an estimate of the dose level which yields a specified toxicity rate. The results
in this paper show that the toxicity rate at the MTD decided by the modified
CRML converges to the predetermined toxicity rate as the sample size increases.
Furthermore, the property holds well even in small samples. These results show
clearly that the modified CRML outperform the standard design.
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TABLE 4.3 Ezact distribution of MTD (hyperbolic tangent functions)(8 = 0.3)

¥(z;;a) = {(tanh(z;) +1)/2}*

a
dose z; 0.5 1075 | 1.0 1.5 2.0
1 —1.40 | 45.8 6.8 0.1 0.0 0.0
—0.90 | 44.5 | 455 | 18.1 0.1 0.0
-0.40 9.4 | 435 | 63.4 | 36.1 | 10.7
0.10 0.3 42 ) 183 ) 594 | 73.8
0.60 0.0 0.0 0.1 43 | 154
1.10 0.0 0.0 0.0 0.1 0.1
1.60 0.0 0.0 0.0 0.0 0.0

~N O O W N

Shapes of Hyperbolic tangent  Expected toxicity rate at MTD (broken:20%,solid:30%)
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FIGURE 4.1 Shapes of hyperbolic tangent functions and ezpected tozicity rate at MTD

In the continual reassessment method there are two main approaches. One is

the Bayesian approach to use the posterior mean and the other is the likelihood
approach to use the maximum likelihood estimate. Small-sample properties are
good for the two approaches as shown in this paper and Kang (2002). It has not
been studied yet which approach is better. In my opinion at this moment it is
a personal choice depending on whether the investigator perfers either Bayesian
approach or frequentist approach. It could be an interesting future study to
compare the Bayesian approach and the likelihood approach.
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