디지털 영상처리 알고리즘을 이용한 벼멸구류의 밀도측정

Density Estimation of Rice Planthoppers Using Digital Image Processing Algorithm

  • 박영석 ;
  • 김황용 (농업과학기술원 작물보호부 농업해충과) ;
  • 엄기백 (농업과학기술원 작물보호부 농업해충과) ;
  • 박창규 (농업과학기술원 작물보호부 농업해충과) ;
  • 이장명 (부산대학교 공과대학 전자공학과) ;
  • 전태수 (부산대학교 자연과학대학 생명과학부)
  • 발행 : 2003.03.01

초록

해충의 발생시기와 발생량에 대한 정확한 예찰정보는 해충의 효율적인 종합적 방제를 위하여 필수적으로 요구된다. 해충의 효율적인 발생 예찰조사를 위해 디지털 영상처리 알고리즘을 이용하여 벼농경지에서 주요 해충인 멸구류를 자동적으로 인식하고 밀도를 측정하도록 하였다. 야외경작지에서 촬영한 입력영상에 대해 구성인자분해과정, 탑헷(top-hat)변환, 역치적용, 최소/최대 필터링 등의 방법을 적용하여 벼 잎에 붙어 있는 멸구 개체를 인식하고 개체수를 헤아렸다. 평균인식율은 95.8%를 보였다. 또한 인지된 각 멸구류 개체 크기를 측정하여 멸구류의 연령분포 추정을 가능하게 하였다

Accurate forecasting of occurrence time and abundance of insect pests is essential for developing technology of integrated pest management system. Digital image processing algorithms were utilized to automatically recognize rice planthoppers which are major insect pests in the rice cultivation field and were subsequently used to estimate densities in the field for efficient forecasting of insect pests. To the images taken in the rice field, image decomposition, top-hat transformation, threshold, and minimum and maximum filter were implemented for patterning individually the brown planthopper specimens attached at the bottom area of rice stems. In average 95.8cio of images were correctly recognized for estimating densities by the developed system, and the recognition rate was higher than that obtained from direct observations by experienced observers. Furthermore, the size of the recognized specimens was measured and was used for estimating the age structure in the observed brown planthopper populations.

키워드

참고문헌

  1. Abdou, I.E. and W.K. Pratt. 1979. Quantitative design and evalua-tion of enhancement/thresholding edge detectors. Proceeding of the IEEE. 67: 753-763 https://doi.org/10.1109/PROC.1979.11325
  2. Adams, R. 1993. Radial decomposition of discs and spheres. CVGIP: Graphical Models and Image Processing 55: 325-332 https://doi.org/10.1006/gmip.1993.1024
  3. Andersen, H.J., C.M. Onyango and J.A. Marchant. 2000. The design and operation of an imaging sensor for detecting vegetation. International Journal of Imaging Systems and Technology 11: 144-151 https://doi.org/10.1002/1098-1098(2000)11:2<144::AID-IMA6>3.0.CO;2-S
  4. Jones, R. and P. Soille. 1996. Periodic lines: Definition, cascades, and application to granulometries. Pattern Recognition Letters. 17: 1057-1063 https://doi.org/10.1016/0167-8655(96)00066-9
  5. Jain, A.K. 1989. Fundamentals of Digital Image Processing. Pren-tice-Hall, Upper Saddle River, NJ
  6. Marchant, J.A., H.J. Andersen and C.M. Onyango. 2001. Evalua-tion of an imaging sensor for detecting vegetation using differ-ent waveband combinations. Computers and Electronic in Agri-culture 32: 101-117 https://doi.org/10.1016/S0168-1699(01)00158-2
  7. Meyer, F. 1979. Iterative image transformations for an automatic screening of cervical smears. J. Histo. Cytochem. 27: 128-135 https://doi.org/10.1177/27.1.438499
  8. Meyer, G.E. and J.A. Deshazer. 1999. Precision Agriculture and Biological Quality. Proceedings of SPIE. Volume 3543
  9. Pratt, W.K. 1991. Digital image processing. John Wiley & Sons, New York
  10. Serra, J. 1982. Image analysis and mathematical morphology. Academic Press
  11. StatSoft, Inc. 2000. STATISTICA for Windows "Computer pro-gram manual". Tulsa, OK
  12. The Mathworks, Inc. 2001. MATLAB Version 6.1, Massachusetts
  13. Zwiggelaar, R., Q.S. Yang., E. Garcia-Pardo and C.R. Bull. 1996. Use of spectral information and machine vision for bruise detec-tion on peaches and apricots. Journal of Agricultural Engineer-ing Research 63: 323-332 https://doi.org/10.1006/jaer.1996.0035