가루깍지벌레(Pseudococcus comstocki Kuwana)의 온도별 발육기간 및 발육단계 전이 모형

Temperature-dependent Development of Pseudococcus comstocki(Homoptera: Pseudococcidae) and Its Stage Transition Models

  • 발행 : 2003.03.01

초록

본 연구는 가루깍지벌레 방제적기 예측을 위한 모형을 개발하고자 수행하였다. 포장에 서 가루깍지벌레 발생시기 조사 및 온도별 발육기간을 조사하였으며 각 발육단계 전이(우화)모형 을 작성하였다. 성충발생 최성기는 1세대 6월 중하순,2세대 8월 중하순,3세대는 10월 하.순으로 수원지방에서는 연 3회 발생하였다. 가루깍지벌레 각 발육단계의 발육기간은 $25^{\circ}C$ 까지는 온도가 증가할수록 감소하였으나 그 이상 온도에서는 증가하였다. 발육영점온도 추정결과 알 14.5$^{\circ}C$, 1령 약충+2령 약충 8.4$^{\circ}C$, 3령 약충 10.2$^{\circ}C$, 산란전기간 11.8$^{\circ}C$, 그리고 1령 약충부터 산란전까지는 10.1$^{\circ}C$ 이었다. 발육완성을 위한 적산온도(DD)는 알 105 DD, 1령 +2령 315 DD, 3령 143 BD, 산란전기간 143DD이었다. 알부터 산란기까지 필요한 적산온도는 599DD이었다. 생물리적 발육모형과 발육완료시기 분포를 나타내는 Weibull함수를 이용 가루깍지벌레의 특정 발육단계에서 다음 발육단계로 전이되는 개체수의 비율을 추정하는 발육단계 전이모형을 작성하였다. 1령부터 산란전기간까지 적산온도를 이용하여 성충발생 세대별 50%산란시기를 예측한 결과 Mean-minus-base 추정법을 사용한 경우 실측일과 비교하여 1992년과 1993련 1세대와 2세대 모두 2-3일의 편차를 보였고,Sinewave추정법을 이용한 경우는 1-7일의 편차를 보였다. Rectangle추정법은 0-6일의 편차를 보였다. 발육모형을 이용 일별 발육률을 추정하고 이것을 누적하는 발육률 적산모형의 경우 1세대와 2세대의 성충산란 시기 예측 결과 모두 50%산란시기까지는 1-2일의 편차를 보였다.

This study was carried out to develop the forecasting model of Pseudococcus comtocki Kuwana for timing spray. Field phonology and temperature-dependent development of p. comstocki were studied, and its stage transition models were developed. p comstocki occurred three generations a year in Suwon. The 1 st adults occurred during mid to late June, and the 2nd adults were abundant during mid to late August. The 3rd adults were observed after late October. The development times of each instar of p. comstocki decreased with increasing temperature up to 25$^{\circ}C$, and thereafter the development times increased. The estimated low-threshold temperatures were 14.5, 8.4, 10.2, 11.8, and 10.1$^{\circ}C$ for eggs, 1st+2nd nymphs, 3rd nymphs, preoviposition, and 1st nymphs to preoviposition, respectively. The degree-days (thermal constants) for completion of each instar development were 105 DD for egg,315 DD for 1st+2nd nymph, 143 DD for 3rd nymph, 143 DD for preoviposition, and 599 DD for 1 st nymph to preoviposition. The stage transition models of p. comstocki, which simulate the proportion of individuals shifted from a stage to the next stage, were constructed using the modified Sharpe and DeMichele model and the Weibull function. In field validation, degree-day models using mean-minus-base, sine wave, and rectangle method showed 2-3d, 1-7d, and 0-6 d deviation with actual data in predicting the peak oviposition time of the 1st and 2nd generation adults, respectively. The rate summation model, in which daily development rates estimated by biophysical model of Sharpe and DeMichele were accumulated, showed 1-2 d deviation with actual data at the same phonology predictions.

키워드

참고문헌

  1. Agnello, A.M., S.M. spangler, W.H. Reissig, D.S. Lawson andR.W. Weires. 1992. Seasonal development and managementstrategies for comstock mealybug (Homoptera: Pseudococcidae)in New York pear orchards. J. Econ. Entomol. 85: 212-225 https://doi.org/10.1093/jee/85.1.212
  2. AliNiazee, M.T. 1976. Thermal unit requirements for determiningadult emergence of the western cherry fruit fly (Diptera: Teph-ritidae) in the Willamette Valley of the Oregon. Environ. Entomol. 5: 398-402
  3. Allen, J.C. 1976. A modified sine wave method for calculatingdegree days. Environ. Entomol. 5: 388-396 https://doi.org/10.1093/ee/5.3.388
  4. Arnold, C.Y. 1960. Maximum-minimum temperature as a basisfor computing heat units. Proc. Am. Soc. Hortic. Sci. 76: 682-692
  5. Butts, R.A. and F.L. MeEwen. 1981. Seasonal populations of thediamond back moth: Plutella xylostella (Lepidoptera: Plutelli-dae), in relation to day-degree accumulation. Can. Entomol.113:127-131 https://doi.org/10.4039/Ent113127-2
  6. Choi, K.R. 1991. Biology and control the comstock mealybug,Pseudococcus comstocki (Homoptera: Pseudococcidae) on thepear tree. Res. Rept. RDA. 34: 85-92
  7. Compere, H. 1933. The Parasites of Pseudococcus comstocki.Can. Entomol. 65: 243-247 https://doi.org/10.4039/Ent65243-11
  8. Curry, G.L., R.M. Feldman and K.C. Smith. 1978a. A stochasticmodel of a temperature-dependent population. J. Theor. Pop.Biol. 13: 197-213 https://doi.org/10.1016/0040-5809(78)90042-4
  9. Curry, G.L., R.M. Feldman and P.J.H. Sharpe. 1978b. Foundationof stochastic development. J. Theor. Biol. 74: 397-410 https://doi.org/10.1016/0022-5193(78)90222-9
  10. Eckenrode, C.J. and R.K. Chapman. 1972. Seasonal adult cabbagemaggot populations in the field in relation to thermal-unit accu-mulation. Ann. Entomol. Soc. Am. 65: 151-156 https://doi.org/10.1093/aesa/65.1.151
  11. Erying, H. 1935. The activated complex in chemical reactions. J.Chem. Physics 3: 107-115 https://doi.org/10.1063/1.1749604
  12. Ferris, G.F. 1919. Observations on some mealy-bugs Hemiptera:Coccidae). J. Econ. Entomol. 12: 292-301 https://doi.org/10.1093/jee/12.4.292
  13. Higley, L.G., L.P. Pedigo and K.R. Ostlie. 1986. DEGDAY: aprogram for calculating degree-days, and assumptions behindthe degree-day approach. Environ. Entomol. 15: 999-1016 https://doi.org/10.1093/ee/15.5.999
  14. Hough, W.S. 1925. Biology and control of comstock's mealybugon the umbrella catalpa. Va. Agric. Exp. Stn. Tech. Bull. 29: 17.
  15. Howe, R.W. 1967. Temperature effects on embryonic develop-ment in insects. Annu. Rev. Entomol. 10: 15-42
  16. Jeon, H.Y,, D.S. Kim, M.S. Yiem and J.H. Lee. 1996. Modelingtemperature-dependent development and hatch of overwinteringeggs of Pseudococcus comstocki (Homoptera: Pseudococcidae).Korean J. Appl. Entomol. 35: 119-125
  17. Jeon, H.Y., D.S. Kim, M.R. Cho, M.S. Yiem and Y.D. Chang.2000. Recent status of major fruit tree pest occurrences inKorea. J. Kor. Soc. Hort. Sci. 41: 606-612
  18. Johnson, F.H. and I. Lewin. 1946. The growth rate of E. coli inrelation to temperature, quinine and coenzyme. J. Cell. Comp.Physiol. 28: 47-75 https://doi.org/10.1002/jcp.1030280104
  19. Kim, D.S., J.H. Lee and M.S. Yiem. 2001. Temperature-depen-dent development of Carposina sasakii (Lepidoptera: Carposi-nidae), and its stage emergence models. Environ. Entomol. 30:298-305 https://doi.org/10.1603/0046-225X-30.2.298
  20. Metcalf, R.L. 1994. Insecticides in pest management. In R.L. Metcalf and W.H. Luckmann, [eds.], Introduction to insect pestmanagement. 3rd ed. John Wiley and Sons, Inc., New York
  21. Meyerdirk, D.E., I.M. Newell and R.W. Warkentin. 1981. Biolo-gical control of comstock mealybug. J. Econ. Entomol. 74: 79-84 https://doi.org/10.1093/jee/74.1.79
  22. Park, J.D. and K.H. Hong. 1992. Species damage and populationdensity of Pseudococcidae injuring pear fruits. Kor. J, Appl.Entomol.31: 133-138
  23. SAS Institute. 1999. SAS OnlineDoc, version 8. SAS Institute,Cary, NC
  24. Schoolfield, R.M., P.J.H. Sharpe and C.E. Mugnuson. 1981. Noli-near regression of biological temperature-dependent rate modelsbased on absolute reaction-rate theory. J. Theor. Biol. 88: 715-731
  25. Wagner, T.L., H. Wu, P.J.H. Sharpe, R.M. Schoolfield and R.N.Coulson. 1984a. Modeling insect development rates: A litera-ture review and application of a biophysical model. Ann. Ento-mol. Soc. Am. 77: 208-225 https://doi.org/10.1093/aesa/77.2.208
  26. Wagner, T.L., H. Wu, P.J.H. Sharpe and R.N. Coulson. 1984b.Modeling distributions of insect development time: A literaturereview and application of the Weibull function. Ann. Entomol.Soc. Am. 77: 475-487 https://doi.org/10.1093/aesa/77.5.475
  27. Wagner, T.L., H. Wu, R.N. Feldman, P.J.H. Sharpe and R.N.Coulson. 1985. Multiple-cohort approach for simulating devel-opment of insect populations under variable temperatures. Ann.Entomol. Soc. Am. 78: 691-704 https://doi.org/10.1093/aesa/78.6.691