Identification and Characterization of Coronatine-Producing Pseudomonas syringae pv. actinidiae

  • Han, Hyo-Shim (Department of Biology, Sunchon National University) ;
  • Koh, Young-Jin (Department of Applied Biology, Sunchon National University) ;
  • Hur, Jae-Seoun (Department of Environmental Education, Sunchon National University) ;
  • Jung, Jae-Sung (Department of Environmental Education, Sunchon National University)
  • Published : 2003.02.01

Abstract

Pseudomonas syringae pv. actinidiae strains, which cause canker disease in kiwifruit, were collected from kiwifruit orchards in Korea and identified using biochemical and physiological tests. The nucleotide sequences of the 16s rDNA and 16s-23s internally transcribed spacer of the isolates were found to be Identical to those of' the pathotype strain, Kwl 1, of P syringae pv. actinidiae. Remarkably, no coding sequence for phaseolotoxin biosynthesis or phaseolotoxin- resistant ornithine carbamoyltransferase was found by PCR amplification in any of the new Korean isolates of pseudomonas syringae pv. actinidiae, although this was clearly identified in the control pathotype Kwl 1 reference strain. In contrast, three primer sets derived from the coronatine biosynthetic gene cluster and DNA from the Korean strains yielded amplified DNA fragments of the expected size. A sequence analysis of the PCR products revealed that P. syringae pv. actinidiae and the Korean strains of pv. actinidiae contain coronafncate ligase genes (cfl)with identical sequences, whereas their. corR genes exhibited 91% sequence similarity. The production of coronatine, instead of phaseolotoxin, by the Korean strains of P. syringae pv. actinidiae was confirmed by a bioassay using reference pathovars known to produce coronatine and phaseolotoxin. The genes for coronatine biosynthesis in the Korean strains of P. syringae pv. actinidiae were found to be present on plasmids.

Keywords

References

  1. J. Mol. Biol. v.215 Basic local alignment search tool Altschul S. F.;W. Gish;E. Miller;E. W. Myers;D. J. Lipman
  2. Phytopathology v.86 A rapid and sensitive PCR-based assay for concurrent detection of bacteria causing common and halo blights in bean seed Audy P.;C. E. Braat;G. Saindon;H. C. Huang;A. Laroche https://doi.org/10.1094/Phyto-86-361
  3. Current Protocols in Molecular Biology Ausubel F. M.;R. Brent;R. E. Kingston;D. D. Moore;J. G. Seidman;J. A. Smith;K. Struhl
  4. Gene v.133 Characterization of the genes controlling biosynthesis of the polyketide phytotoxin coronatine including conjugation between coronafacic and coronamic acid Bender C.;H. Liyanage;D. Palmer;M. Ullrich;S. Young;R. Mitchell https://doi.org/10.1016/0378-1119(93)90221-N
  5. J. Bacteriol v.171 Plasmid-mediated production of the phytotoxin coronatine in Pseudomonas syringae pv. tomato Bender C. L.;D. K. Malvick;R. E. Mitchell
  6. Microbiol. Mol. Biol. Rev. v.63 Pseudomonas syringae phytotoxins: Mode of action, regulation and biosynthesis by peptide and polyketide synthetases Bender C. L.;F. Alarcon Chaidez;D. C. Gross
  7. Appl. Environ. Microbiol. v.60 Identification and relatedness of coronatine-producing Pseudomonas syringae pathovars by PCR analysis and sequence determination of the amplification products Bereswill S.;P. Bugert;B. Volksch;M. Ullrich;C. L. Bender;K. Geider
  8. Int. J. Syst. Bacteriol v.46 16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter and intraspecific Bifidobacterium phylogeny Bourget N.;H. Philippe;I. Mangin;B. Decaris https://doi.org/10.1099/00207713-46-1-102
  9. Proc. Natl. Acad. Sci. USA v.75 Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli Brosius J.;J. L. Palmer;H. P. Kennedy;H. F. Noller https://doi.org/10.1073/pnas.75.10.4801
  10. Appl. Environ. Microbiol v.65 Biological and molecular detection of toxic lipodepsipeptide-producing Pseudomonas syringae strains and PCR identification in plants Bultreys A.;I. Gheysen
  11. Appl. Environ. Microbiol. v.64 Comparison of randomly amplified polymorphic DNA with amplified fragment length polymorphism to assess genetic diversity and genetic relatedness within genospecies III of Pseudomonas syringae Clerc A.;A. Manceau;X. Nesme
  12. Phytopathology v.74 The use of pathovar-indicative bacteriophages for rapidly detecting Pseudomonas syringae pv. tomato in tomato leaf and fruit lesions Cuppels D. A. https://doi.org/10.1094/Phyto-74-891
  13. Appl. Environ. Microbiol. v.61 Molecular and physiological characterization of Pseudomonas syringae pv. tomato and Pseudomonas syringae pv. maculicola strains that produce the phytotoxin coronatine Cuppels D. A.;T. Ainsworth
  14. Pseudomonas syringae Pathovars and Related Pathogens DNA relatedness among pathovars of P. syringae and related bacteria Gardan L.;H. Shafif;P. A. Grimont;K. Rudolph (ed.);T. J. Burr (ed.);J. W. Mansfield (ed.);D. Stead (ed.);A. Vivian (ed.);J. Von Kietzell (ed.)
  15. Annu. Rev. Phytopathol. v.29 Molecular and genetic analysis of toxin production by pathvars of Pseudomonas syringae Gross D. C. https://doi.org/10.1146/annurev.py.29.090191.001335
  16. J. Phytopathol v.137 Serological specificity of the lipopolysaccharides, the major antigens of Pseudomonas syringae Guillorit C.;R. Samson https://doi.org/10.1111/j.1439-0434.1993.tb01335.x
  17. Laboratory Guide for Identification of Plant Pathogenic Bacteria Pseudomonas Hildebrand D. C.;M. N. Schroth;D. C. Sands;N. W. Schaad (ed.)
  18. Mol. Plant-Microb. Interact. v.8 Role of biosurfactant and ion channel-forming activities of syringomycin in transmembrane ion flux: A model for the mechanism of action in the plant-pathogen interaction Hutchison M. L.;M. A. Tester;D. C. Gross https://doi.org/10.1094/MPMI-8-0610
  19. Kor. J. Plant Pathol. v.10 Outbreak and spread of bacterial canker in kiwifruit Koh Y. J.;B. J. Cha;H. J. Chung;D. H. Lee
  20. Appl. Environ. Microbiol. v.60 Length polymorphism analysis of PCR-amplified 16S rRNA genes Laguerre G.;M. R. Allard;F. Revoy;N. Amarger
  21. Nucleic Acid Techniques in Bacterial Systematics 16S/23S rRNA sequencing Lane D. J.;E. Stackebrandt (ed.);M. Goodfellow (ed.)
  22. Appl. Environ. Microbiol. v.59 DNA sequence variation and phylogenetic relationships among strains of Pseudomonas syringae pv. syringae inferred from restriction site maps and restriction fragment length polymorphism Legard D. E.;C. F. Aquadro;J. E. Hunter
  23. Physiol. Mol. Plant Pathol. v.28 The isolation and properties of a tabtoxin-hydrolyzing aminopeptidase from the periplasm of Pseudomonas syringae pv. tabaci Levi C.;R. D. Durbin https://doi.org/10.1016/S0048-4059(86)80076-5
  24. Plant Dis. v.78 Variation in virulence, plasmid content and genes for coronatine synthesis between Pseudomonas syringae pv. morsprunorum and P. s. syringae from Prunus Liang L. Z.;P. Sobiczewski;J. M. Paterson;A. L. Jones https://doi.org/10.1094/PD-78-0389
  25. Appl. Environ. Microbiol. v.61 Characterization and transcriptional analysis of the gene cluster for coronafacic acid, the polyketide component of the phytotoxin coronatine Liyanage H.;D. A. Palmer;M. Ullrich;C. L. Bender
  26. Appl. Environ. Microbiol. v.60 Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR Louws F. J.;D. W. Fulbright;C. T. Stephens;F. J. de Bruijn
  27. Ann. Appl. Biol. v.125 Differentiation of Erwinia carotovora subsp. atroseptica and carotovora by RAPD-PCR Maki-Valkama T.;R. Karjalainen https://doi.org/10.1111/j.1744-7348.1994.tb04971.x
  28. Appl. Environ. Microbiol. v.63 Assessment of genetic diversity among strains of Pseudomonas syringae by PCR-restriction fragment length polymorphism analysis of rRNA operons with special emphasis on P. syringae pv. tomato Manceau C.;A. Horvais
  29. Phytochemistry v.15 Isolation and structure of a chlorosis inducing toxin of Pseudomonas phaseolicola Mitchell R. E. https://doi.org/10.1016/S0031-9422(00)88851-2
  30. Appl. Environ. Microbiol. v.59 Effects of environmental and nutritional factors on production of the polyketide phytotoxin coronatine by Pseudomonas syringae pv. glycinea Palmer D. A.;C. L. Bender
  31. Appl. Environ. Microbiol. v.63 Comparative analysis of Pseudomonas syringae pv. actinidiae and pv. phaseolicola based on phaseolotoxin-resistant ornithine carbamoyltransferase gene (argK) and 16S-23S rRNA intergenic spacer sequences Sawada H.;T. Takeuchi;I. Matsuda
  32. Plant Pathol. v.43 Occurrence of Pseudomonas syringae pv. actinidiae on kiwifruit in Italy Scortichini M. https://doi.org/10.1111/j.1365-3059.1994.tb01654.x
  33. Phytopathology v.69 A rapid and sensitive microbiological assay for phaseolotoxin Staskawicz B. J.;N. J. Panopoulos https://doi.org/10.1094/Phyto-69-663
  34. Proceeding of the Working Group Pseudomonas syringae Classification of P. syringae pathovars by fatty acid profiling Stead D. E.;International Society of Plant Pathology (ed.)
  35. Plant Dis. v.80 Detection and identification of Pseudomonas syringae pv. atropurpurea by PCR amplification of specific fragments from an indigenous plasmid Takahashi Y.;T. Omura;H. Hibino;M. Sato https://doi.org/10.1094/PD-80-0783
  36. Ann. Phytopathol. Soc. Japan v.55 Pseudomonas syringae pv. actinidiae pv. nov.: The causal bacterium of canker of kiwifruit in Japan Takikawa Y.;S. Serizawa;T. Ichikawa;S. Tsuyumu;M. Goto https://doi.org/10.3186/jjphytopath.55.437
  37. Ann. Phytopathol. Soc. Japan v.55 Characterization of the toxin produced by Pseudomonas syringae pv. actinidiae, the casual bacterium of kiwifruit canker Tamura K.;Y. Takikawa;S. Tsuyumu;M. Goto
  38. Experimentia v.36 Hydrolysis of tabtoxins by plant and bacterial enzymes Uchytil T. F.;R. D. Durbin https://doi.org/10.1007/BF01952288
  39. J. Bacteriol. v.177 A modified two-component regulatory system is involved in temperature-dependent biosynthesis of the Pseudomonas syringae Phytotoxin coronatine Ullrich M.;A. Penaloza Vazquez;A. M. Bailey;C. L. Bender
  40. J. Bacteriol. v.176 The biosynthetic gene cluster for coronamic acid, an ethylcyclopropyl amino acid, contains genes homologous to amino acid-activating enzymes and thioesterases Ullrich M.;C. L. Bender
  41. J. Gen. Microbiol. v.139 Molecular characterization of field isolates of Pseudomonas syringae pv. glycinea differing in coronatine production Ullrich M.;S. Bereswill;B. Volksch;W. Fritsche;K. Geider https://doi.org/10.1099/00221287-139-8-1927
  42. Syst. Appl. Microbiol. v.13 Differentiation of phytopathogenic Pseudomonas and Xanthomonas species and pathovars by numerical taxonomy and protein gel electrophoregrams Van Zyl E.;P. L. Steyn https://doi.org/10.1016/S0723-2020(11)80181-5
  43. Plant Pathol. v.45 Production of syringomycins and syringopeptins by Pseudomonas syringae pv. atrofaciens Vassilev V.;P. Lavermicocca;D. Di Giorgio;N. S. Iacobellis https://doi.org/10.1046/j.1365-3059.1996.d01-126.x
  44. FEBS Lett. v.345 The Pseudomonas phytotoxin coronatine mimics octadecanoid signaling molecules of higher plants Weiler E. W.;T. M. Kutchan;T. Gorba;W. Brodschelm;U. Niesel;F. Bublitz https://doi.org/10.1016/0014-5793(94)00411-0