References
- FEBS Lett. v.225 Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response Attfield P. V.
- Biochem. Biophys. Res. Comm. v.220 Heat shock protein synthesis and trehalose accumulation are not required for induced thermotolerance in depressed Saccharomyces cerevisiae Gross C.;K. Watson https://doi.org/10.1006/bbrc.1996.0478
- Yeast v.14 Application of mRNA differential display to investigate gene expression in thermotolerant cells of Saccharomyces cerevisiae Gross C.;K. Watson https://doi.org/10.1002/(SICI)1097-0061(19980330)14:5<431::AID-YEA242>3.0.CO;2-V
- J. Bacteriol v.169 Heat induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae Hottiger T.;P. Schmutz;A. Wiemken
- Cell. Mol. Biol. v.41 The correlative evidence suggesting that trehalose stabilizes membrane structure in the yeast Saccharomyces cerevisiae Iwahashi H.;K. Obuchi;S. Fujii;Y. Komatsu
- Kor. J. Appl. Microbiol. Biotechnol. v.23 Isolation of Saccharomyces cerevisiae F 38-1, a thermotolerant yeast for fuel alcohol production at higher temperature Kim J. W.;I. N. Jin;J. H. Seo
- Kor. J. Appl. Microbiol. Biotechnol. v.23 The fermentation characteristics of Saccharomyces cerevisiae F 38-1, a thermotolerant yeast isolated for fuel alcohol production at elevated temperature Kim J. W.;S. H. Kim;I. N. Jin
-
J. Microbiol. Biotechnol.
v.11
Estimation of theoretical yield for ethanol production from
$_D$ -xylose by recombinant Saccharomyces cerevisiae using metabolic pathway synthesis algorithm Lee T. H.;M. Y. Kim;Y. W. Ryu;J. H. Seo - J. Cell. Physiol. v.137 Thermal analysis of CHL V79 cells using differential scanning calorimetry: Implication for hyperthermic cell killing and the heat shock response Lepock J. R.;H. E. A. Frey;M. Rodhal;J. Kruuv https://doi.org/10.1002/jcp.1041370103
- Annu. Rev. Biochem. v.55 The heat-shock response Lindquist S. https://doi.org/10.1146/annurev.bi.55.070186.005443
- Progr. Nucleic Acid Res. Mole. Biol. v.58 Molecular biology of trehalose and the trehalases in the yeast Saccharomyces cerevisiae Nwaka S.;H. Holzer
- Yeast v.14 Stabilization of two families of critical targets for hyperthermic cell killing and acquired thermotolerance of yeast cells Obuchi K.;H. Iwahashi;J. R. Lepock;Y. Komatsu https://doi.org/10.1002/(SICI)1097-0061(1998100)14:14<1249::AID-YEA323>3.0.CO;2-A
- Yeast v.16 Calorimetric characterization of critical targets for killing and acquired thermotolerance in yeast Obuchi K.;H. Iwahashi;J. R. Lepock;Y. Komatsu https://doi.org/10.1002/(SICI)1097-0061(20000130)16:2<111::AID-YEA507>3.0.CO;2-V
- J. Microbiol. Biotechnol. v.12 Effect of trehalose on bioluminescence and viability of freeze-dried bacterial cells Park J. E.;K. H. Lee;D. J. Jahng
- Yeast Stress Responses The yeast heat shock responses Piper P. W.;S. Hohmann (ed.);W. H. Mager (ed.)
- Biochem. Biophys. Acta v.1200 Trehalose metabolism in Saccharomyces cerevisiae during heat shock Ribeiro M. J. S.;J. T. Silva;A. D. Panek https://doi.org/10.1016/0304-4165(94)90128-7
- Trends Biotechnol. v.16 Thermotolerance in Saccharomyces cerevisiae: The Yin and Yang of trehalose Singer M. A.;S. Lindquist https://doi.org/10.1016/S0167-7799(98)01251-7
- Antonie Van Leeuwenhoek v.58 Trehalose in yeast, stress protectant rather than reserve carbohydrate Wiemken A. https://doi.org/10.1007/BF00548935