Biotoxic Cyanobacterial Metabolites Exhibiting Pesticidal and Mosquito Larvicidal Activities

  • Kumar, Ashok (School of Biotechnology, Banaras Hindu University) ;
  • Dhananjaya P. , Singh (School of Biotechnology, Banaras Hindu University) ;
  • Tyagi, M.B. (Dept. of Botany, Mahila Mahavidyalaya, Banaras Hindu Univ.)
  • Published : 2003.02.01

Abstract

A freshwater bloom-forming cyanobacterium, Microcystis aeruginosa, and local soil isolate Scytonema sp. strain BT 23 were demonstrated to contain biotoxic secondary metabolites with pesticidal and mosquito larvicidal activities. A purified toxic constituent from M aeruginosa showed an absorption maximum at 230 nm and its toxicity symptoms, Rf value on TLC, and retention time observed ill an HPLC analysis were similar to those of the hepatotoxic heptapeptide microcystin-LR. The bioactive constituent of the Scytonema sp. was less polar in nature and exhibited two peaks at 240 and 285 m. When applied to two cruciffrous pests, Pieris brassicae and Plutella flostella, the crude extracts and toxic principles from the two cyanobacteria showed significant antifeedant activity in a no-choice bioassay, and at higher concenuations exhibited contact toxicity to the insect larvae. The purified toxin from M. aeruginosa was found to be more effective and produced 97.5 and $92.8\%$ larval mortality in the two pests, fo11owing 2 h of toxin treatment at a concentration of $25{\mu}g$ Per leaf disc (2.5 cm dia.). Meanwhile, similar treatment with the purified toxin from Sytonema sp. stain BT 23 only produced 73 and $78\%$ mortality in the two pests. The cyanobacterial constituents also showed significant activity against Culex and Anopheles larvae. The M. aeruginosa toxin ($20{\mu}g\;ml^-1$) caused 98.2 and $88.1\%$ mortality in the Culex and Anopheles larvae, respectively, while the purified toxin from the Sytonema sp. was less toxic and only produced a 96.3 and $91.2\%$ mortality, respectively, at a much higher concentration ($40{\mu}g\;ml^-1$). Accordingly, the current results point to certain hitherto unknown biological properties of cyanobacterial biotoxins.

Keywords

References

  1. J. Econom. Entomol. v.18 A method for computing the effectiveness of an insecticide Abbott W. S.
  2. Insecticides of Plant Origin. Am. Chem. Soc. Symposium Series 387 Search for new pesticides from higher plants Alkofahi A.;J. K. Rupprecht;J. L. McLaughlin;K. L. Mikolajczak;B. A. Scott;J. T. Arnason (ed.);B. J. R. Philogene (ed.);P. Morand (ed.)
  3. Toxicon v.37 Dynamics of microcystins in the missel Mytilus galloprovicialis Amorim A.;V. Vasconcelos https://doi.org/10.1016/S0041-0101(98)00231-1
  4. J. Appl. Bacteriol. v.72 Cyanobacterial secondary metabolites the cyantoxins Carmichael W. W. https://doi.org/10.1111/j.1365-2672.1992.tb01858.x
  5. Sci. Amer v.270 The toxins of cyanobacteria Carmichael W. W. https://doi.org/10.1038/scientificamerican0194-78
  6. Adv. Bot. Res. v.27 The cyanotoxins Carmichael W. W. https://doi.org/10.1016/S0065-2296(08)60282-7
  7. Eur. J. Phycol v.34 Cyanobacterial toxins and human health Codd G. A.;S. G. Bell;K. Kaya;C. J. Ward;K. A. Beattie;J. S. Metcalf https://doi.org/10.1080/09670269910001736462
  8. Toxicon v.37 Retention of Microcystis aeruginosa and microcystin by salad lettuce (Lactuca sativa) after spray irrigation with water containing cyanobacteria Codd G. A.;J. S. Metcalf;K. A. Beattie https://doi.org/10.1016/S0041-0101(98)00244-X
  9. Limnol. Oceanogr. v.36 Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia Demott W. R.;Q. X. Zhang;W. W. Carmichael https://doi.org/10.4319/lo.1991.36.7.1346
  10. Algal and Cyanobacterial Biotechnology Secondary metabolites of pharmaceutical potential Glombitza K. W.;M. Koch;R. C. Cresswell (ed.);T. A. V. Rees (ed.);N. Shah (ed.)
  11. Limnol. Oceanogr. v.40 Effects of products released by Aphanizomenon flos-aquae and purified saxitoxin on the movements of Daphnia carinata feeding appendages Haney J. F.;J. J. Sasner;M. Ikawa https://doi.org/10.4319/lo.1995.40.2.0263
  12. Chem. Res. Toxicol. v.4 Microcystins from Anabaena flos-aquae NRC 525-17 Harada K. I.;K. Ogawa;Y. Kimura;H. Murata;M. Suzuki;P. M. Thorn;W. R. Evans;W. W. Carmichael
  13. Toxicon v.26 Improved method for purification of toxic peptides produced by cyanobacteria Harada K. I.;M. Suzuki;A. M. Dahlem;V. R. Beasley;W. W. Carmichael;K. L. Rinehart https://doi.org/10.1016/0041-0101(88)90182-1
  14. Insecticides of Plant Origin Am. Chem. Soc. Symposium Series 387 Antipest secondary metabolites from african plants Hassanali A.;W. Lwande;J. T. Arnason (ed.);B. J. R. Philogene (ed.);P. Morand (ed.)
  15. Microbiol. Rev. v.53 Insecticidal crystal proteins of Bacillus thuringiensis Hofte H.;H. R. Whiteley
  16. J. Nat. Products v.64 Two new cyclic peptides with antifungal activity from the cyanobacterium Tolypothrix byssoidea (EAWAG 195) Jaki B.;O. Zerbe;J. Heilmann;O. Sticher https://doi.org/10.1021/np000297e
  17. Planta Medica (Suppl) v.57A Toxicity of planktonic cyanobacteria (blue-green algae) to mosquito larvae Kiviranta J.;E. Saario;S. I. Neimela
  18. J. Microbiol. Biotechnol. v.10 Production of hepatotoxin by the cyanobacterium Scytonema sp. strain BT 23 Kumar A.;D. P. Singh;M. B. Tyagi;A. Kumar;E. G. Prasuna;J. K. Thakur
  19. J. Org. Chem. v.60 A bioactive modified peptide, aeruginosamide, isolated from the cyanbacterium Microcystis aeruginosa Lawton A.;L. A. Morris;M. Jaspars
  20. J. Phycol. v.35 Production of secondary metabolites by filamentous tropical marine cyanobacteria: Ecological functions of the compounds Nagale D. G.;V. J. Paul https://doi.org/10.1046/j.1529-8817.1999.3561412.x
  21. J. Appl. Phycol. v.6 Bioactive natural products from blue-green algae Patterson G. M. L.;L. K. Larsen;R. E. Moore https://doi.org/10.1007/BF02186069
  22. Trans. R. Soc. Trop. Med. Hyg. v.93 Larvicidal properties of the cyanobacterium Westiellopsis sp. (blue-green algae) against mosquito vectors Rao D. R.;C. Thangavel;I. Cabilan;S. Suguna;R. Mani;S. Shanmugasundaram https://doi.org/10.1016/S0035-9203(99)90002-0
  23. Appl. Environ. Microbiol. v.64 Variation of microcystins, cyanobacterial heptotoxins in Anabaena spp. as a function of growth stimuli Rapala J.;K. Sivonen;C. Lyra;S. I. Niemela
  24. J. Appl. Phycol. v.6 Structure and biosynthesis of toxins from blue-green algae (cyanobacteria) Rinehart K. L.;M. Namikoshi;B. W. Choi https://doi.org/10.1007/BF02186070
  25. J. Gen. Microbiol. v.111 Generic assignments, strain histories and properties of pure cultures of cyanobacteria Rippka R.;J. Deruelles;J. B. Waterbury;M. Herdman;R. Y. Stanier https://doi.org/10.1099/00221287-111-1-1
  26. Appl. Microbiol. Biotechnol. v.46 Preparation of cyanobacterial peptide toxin as a biopesticide against cotton pests Sathiyamoorthy P.;S. Shanmugasundaram https://doi.org/10.1007/s002530050852
  27. Indian Agricultural Research Institute Role of Blue-green Algae in Nitrogen Economy of Indian Agriculture Singh R. N.
  28. Phycologia v.35 Cyanobacterial toxins and toxin production Sivonen K. https://doi.org/10.2216/i0031-8884-35-6S-12.1
  29. Planta Medica v.61 Larvicidal constituents of Melantheria albinervia Slimestad R.;A. Marston;S. Mavi;K. Hostettmann https://doi.org/10.1055/s-2006-959374
  30. Ph. D. Thesis, Banaras Hindu University Screening and characterization of secondary metabolites from certain cyanbacteria Singh D. P.
  31. Microcystis aeruginosa, World J. Microbiol. Biotechnol. v.17 Antialgal activity of a hepatotoxin producing cyanobacterium Singh D. P.;M. B. Tyagi;Arvind Kumar;J. K. Thakur;Ashok Kumar https://doi.org/10.1023/A:1016622414140
  32. J. Microbiol. Biotechnol. v.9 Cyanobacterial toxins: The current status Tyagi M. B.;J. K. Thakur;D. P. Singh;A. Kumar;E. G. Prasuna;A. Kumar