DOI QR코드

DOI QR Code

Soft Magnetic Properties of Fe-Hf-N Films Reacted with Bonding Glass

접합유리와 반응된 Fe-Hf-N 박막의 연자기 특성

  • 김경남 (고려대학교 재료공학과) ;
  • 김병호 (고려대학교 재료공학과) ;
  • 제해준 (한국과학기술연구원 재료연구부)
  • Published : 2003.02.01

Abstract

The purpose of this study is to investigate the effect of chemical reaction with a bonding glass on physical and magnetic properties of Fe-Hf-N/SiO$_2$ and Fe-Hf-N/Cr/SiO$_2$ thin films. When the Fe-Hf-N/SiO$_2$ films were reacted with the bonding glass, the soft magnetic properties of them were extremely degraded. At $600^{\circ}C$, the saturation magnetization of the reacted film decreased to 1 kG, and its coercivity increased to 27 Oe, and its effective permeability decreased to 70. It was found that the degradation of soft magnetic properties of the Fe-Hf-N/SiO$_2$ films reacted with the bonding glass were attributed to the oxidation of the Fe-Hf-N layers to HfO$_2$ and Fe$_3$O$_4$. The soft magnetic properties of the Fe-Hf-N/Cr/SiO$_2$ films reacted with the bonding glass were degraded less than those of Fe-Hf-N/SiO$_2$ films. At $600^{\circ}C$, the saturation magnetization of the reacted film decreased to 13.5 kG, and its coercivity increased to 4 Oe, and its effective permeability decreased to 700. It was found that the Cr layer suppressed the oxidation of the Fe-Hf-N layers during the chemical reaction between the Fe-Hf-N layer and bonding glass.

열처리 온도에 따라 접합유리와의 화학적 반응이 Fe-Hf-N/SiO$_2$, 및 Fe-Hf-N/Cr/SiO$_2$ 박막의 물리적, 자기적 특성에 미치는 영향을 고찰하였다. 접합유리와 반응된 Fe-Hf-N/SiO$_2$ 박막의 연자기 특설은 온도가 증가함에 따라 크게 떨어졌으며, $600^{\circ}C$에서 포화자화값은 1 kG, 보자력이 27 Oe, 10MHz에서의 유효투자율이 70로 자기적 특성이 급격히 열화되었다. 이는 접합유리와의 화학적 반응에 의해 Fe-Hf-N 박막이 H$_{f}$ O$_2$, Fe$_3$O$_4$ 등으로 산화되기 때문인 것으로 나타났다. Fe-Hf-N/Cr/SiO$_2$ 박막의 경우, $600^{\circ}C$에서 포화자화값 13.5kG, 보자력은 4Oe, 10 MHz에서의 유효 투자율이 700으로 Fe-Hf-N/SiO$_2$ 박막보다 연자기 특성 열화가 덜 일어났다. 이는 Fe-Hf-N/Cr/SiO$_2$ 박막의 Cr 층이 Fe-Hf-N 박막의 산화를 억제하여. 일부에서만 HfO$_2$가 생성되고 나머지는 원래의 $\alpha$-Fe상을 유지하기 때문인 것으로 나타났다.

Keywords

References

  1. IEEE Trans. Magn. v.27 O. Kohmoto https://doi.org/10.1109/20.102934
  2. J. Appl. Phys. v.67 S. Wang;M. H. Kryder https://doi.org/10.1063/1.344665
  3. IEEE Trans. Magn. v.26 M. Takahashi;H. Shoji;T. Shimatsu;H. Komaba;T. Wakiyama https://doi.org/10.1109/20.104425
  4. IEEE Trans. Magn. v.31 H. J. Ryu;J. J. Lee;S. H. Han;H. J. Kim;I. K. Kang;J. O. Choi https://doi.org/10.1109/20.489799
  5. J. Appl. Phys. v.75 J. O. Choi;J. J. Lee;S. H. Han;H. J. Kim;I. K. Kang https://doi.org/10.1063/1.355562
  6. 한국자기학회지 v.10 김경일;김병호;김병국; 제해준
  7. J. Appl. Phys. v.71 A. Nitta;H. Nakamura;T. Komatsu;K. Matusta https://doi.org/10.1063/1.351163
  8. J. Appl. Phys. v.78 Hae June Je;Do Kyung Kim;Chong Hee Kim;Kug Sun Hong;Byeong Won Park;Sung Do Jang https://doi.org/10.1063/1.360408
  9. 한국자기학회지 v.7 박진영;김종열; 김광윤; 한석희;김희중