DOI QR코드

DOI QR Code

무거운 헤일로를 가진 구형 은하의 역학 모형

DYNAMICAL MODELS OF SPHERICAL GALAXIES WITH MASSIVE HALO

  • 천문석 (연세대학교 천문우주학과) ;
  • 고훈성 (연세대학교 천문우주학과) ;
  • 손영종 (연세대학교 자외선우주망원경연구단)
  • 발행 : 2003.03.01

초록

Schwarzschild의 선형 계획법을 사용하여 평형상태에서의 구형은하를 기술하는 비 충돌 볼쯔만 방정식의 일반적인 해를 얻었다. 이 계산으로부터 de Vaucouleurs의 광도 법칙을 만족하고 무거운 헤일로를 포함하는 등방성 구형은하의 존재를 확인할 수 있었다. 타원은하에서 속도 분산 곡선이 편평하거나 서서히 증가하는 현상은 암흑물질에 의한 질량대 광도비의 증가로 해석할 수 있다. 이런 경우 암흑물질의 밀도 분포는 core반경이 은하의 유효반경보다 훨씬 작은 값을 갖는다는 사실을 확인할 수 있었다.

Using the Schwarzschild's linear programming technique, we obtained the general solutions of the collisionless Bolzmann equation describing the spherical galaxy in dynamical equilibrium. From this calculation we have confirmed the existence of isotropic spherical galaxies obeying a de Vaucouleurs'law which includes a dark halo. The flattening profile of the velocity dispersion curve seen in the elliptical galaxies can be explained as the increase of mass to light ratio in this dark matter. The space density distribution of this dark matter shows that the core radius of the dark matter is smaller than the effective radius of the galaxy.

키워드

참고문헌

  1. MNRAS v.194 Baily, M. E.;Macdonald, J. https://doi.org/10.1093/mnras/194.2.195
  2. MNRAS v.177 Binney, J. https://doi.org/10.1093/mnras/177.1.19
  3. Galactic Dynamics Binney, J.;Tremaine, S.
  4. MNRAS v.182 Carter, D. https://doi.org/10.1093/mnras/182.4.797
  5. MNRAS v.212 Carter, D;Efstathiou, G.;Godwin, J. G.
  6. ApJ v.212 Davies, R. P. https://doi.org/10.1086/155051
  7. ApJL v.237 Duncan, M. J.;Wheeler, J. C.
  8. ApJ v.267 Fabricant, D.;Gorenstein, P. https://doi.org/10.1086/160890
  9. ApJ v.293 Forman, W.;Jones, C.;Tucker. W. https://doi.org/10.1086/163218
  10. ApJ v.251 Gott,J. R. https://doi.org/10.1086/159488
  11. ApJ v.209 Gott, J. R.;Turner, E. https://doi.org/10.1086/154685
  12. MNRAS v.219 Gottsman, S. T.;Hawarden,T. G. https://doi.org/10.1093/mnras/219.4.759
  13. ApJ v.251 Harris, W. E. https://doi.org/10.1086/159488
  14. ApJ v.233 Hellingman, G.;Schwarzshild, M. https://doi.org/10.1086/157449
  15. ApJ v.296 Hernquist, G.;Quinn, P. J. https://doi.org/10.1086/163414
  16. ApJ v.296 Hernquist, G.;Quinn, P. J.
  17. ApJL v.218 Illingworth, G. https://doi.org/10.1086/182572
  18. IMSL Library2 v.2
  19. AJ v.91 Kent, S. M. https://doi.org/10.1086/114106
  20. ApJ v.212 Kirshner, R. P. https://doi.org/10.1086/155051
  21. AJ v.90 Knapp, G. R.;Turner, E. L.;Cunniffe, P. E. https://doi.org/10.1086/113751
  22. ApJ v.295 Levinson, H.;Richstone, D. O https://doi.org/10.1086/163378
  23. ApJ v.259 Levinson, H.;Richstone, D. O.
  24. ApJ v.314 Levinson, H.;Richstone, D. O. https://doi.org/10.1086/165079
  25. AJ v.95 Mathews, W. J. https://doi.org/10.1086/114702
  26. ApJ v.291 Mathews, W. J.;Baker, J. C.
  27. ApJ v.319 Merrit, D. https://doi.org/10.1086/165432
  28. Structure and Dynamics of Elliptical Galaxies Mould, J. R.;Oke, J. B.;Nemec, N. M.
  29. MNRAS v.208 Nulsen, P. E.;Stewart, G. C.;Fabian, W. https://doi.org/10.1093/mnras/208.2.185
  30. ApJ v.246 Raimond, E.;Faber, S. M.;Gallagher, J. S.;Knapp, G. R. https://doi.org/10.1086/158967
  31. ApJ v.245 Richstone, D. O.
  32. ApJ v.252 Richstone, D. O. https://doi.org/10.1086/159578
  33. ApJ v.281 Richstone, D. O. https://doi.org/10.1086/162079
  34. ApJ v.268 Richstone, D. O.;Malumuth, E. M. https://doi.org/10.1086/160926
  35. ApJ v.286 Richstone, D. O.;Tremaine, S. https://doi.org/10.1086/162572
  36. ApJ v.296 Richstone, D. O.;Tremaine, S. https://doi.org/10.1086/163455
  37. ApJ v.238 Rubin, V. C.;Ford, W. K.;Thonnard, N. https://doi.org/10.1086/158003
  38. ApJ v.331 Sarazin, C. L.;Whiten, R. E. https://doi.org/10.1086/166540
  39. ApJ v.221 Sargent, W. L.;Young, P. J.;Boksenberg, A.;Shortridge, K.;Lynds, C. R.;Hartwick, F. D. https://doi.org/10.1086/156077
  40. ApJ v.229 Schechter, P. L.;Gunn, J. E. https://doi.org/10.1086/156978
  41. ApJ v.232 Schwarzshild. M. https://doi.org/10.1086/157282
  42. ApJ v.263 Schwarzshild, M.
  43. ApJ v.278 Stewart, G. C.;Canizares, C. R.;Fabian, A. C.;Nulsen, P. E.
  44. ApJ v.266 Tonry, J. https://doi.org/10.1086/160758
  45. ApJ v.296 Trinchieri, G.;Fabbiano, G. https://doi.org/10.1086/163463
  46. ApJ v.208 Turner, E. L. https://doi.org/10.1086/154576
  47. AJ v.251 van Gorkom, J. H.;Knapp, G. R.;Raimond, E.;Faber, S. M.;Gallagher, J. S.
  48. ApJ v.366 Vietri, M
  49. ApJ v.280 White, R. E.;Chevalier, R. A. https://doi.org/10.1086/162026
  50. MNRAS v.183 White, S. D. M.;Rees, M. J. https://doi.org/10.1093/mnras/183.3.341
  51. ApJ v.306 Young, P. J.