Optimization of Production of Trehaolse from Maltose using Recombinant Trehalose Synthase from Thermus caldophilus GK24

재조합 트레할로스 합성효소에 의한 맥아당으로부터 트레할로스 생산 최적화

  • 조연정 (한국생명공학연구원 바이오벤처센터 ㈜엔지뱅크) ;
  • 고석훈 (한국생명공학연구원 바이오벤처센터 ㈜엔지뱅크) ;
  • 이대실 (한국생명공학연구원 미생물 유전체 연구실) ;
  • 신현재 (한국생명공학연구원 바이오벤처센터 ㈜엔지뱅크)
  • Published : 2003.02.01

Abstract

Recombinant trehalose synthase from Thermus caldophilus GK24 showed an ability to produce trehalose from maltose. The activity of the partially purified enzyme was not influenced by most metal ions at 1 mM but was inhibited by 10 mM $Co^{2+}$, $Mn^{2+}$, and $Fe^{2+}$. Enzyme activity varied during prolonged reaction due to changes in the environmental conditions. Thus, the reaction was carried out for an extended time with optimized conditions of $45^{\circ}C$ and pH 7.0. An yield of 32.9% was reached at $60^{\circ}C$ after reaction for 22 h, and, maximum trehalose conversion (69.2%) was attained at $25^{\circ}C$. The yields obtained using enzyme dosages of 10, 25, and 50 U/g were 62.3, 62.3 and 59.0 %, respectively, though the initial conversion rate was higher when the higher dose was used. Similar profiles of trehalose production yields were observed with reaction working volumes of 10 ml to 2,000 ml.

재조합 trehalose synthase 반응을 통하여 트레할로스를 생산하였고, 그 반응조건의 특성들을 조사하고 트레할로스를 정제하였다. 초기 효소반응 조건으로 최적화된 $45^{\circ}C$, pH 7.0를 기본으로 하여 트레할로스 생산을 극대화하기 위해 반응조건들을 장시간 동안 수행하여 조사하였다. 기질농도는 저농도인 1 g/l에서 가장 높은 65.2 % 트레할로스 생산수율을 나타내었다. 초기 효소 반응에서는 $65^{\circ}C$ 까지는 트레할로스 생성량에 차이가 없었으나 장시간 $60^{\circ}C$ 에서 반응할 경우 트레할로스 생성률은 32.9 %로 상당히 낮은 생성률을 나타내었다. 반면 $25^{\circ}C$에서 반응 할 경우 최대 69.2%의 트레할로스 생성량을 보였다. 효소 양에 따른 트레할로스 최종 생산수율은 10, 25, 50 U/g의 효소 양에 따라 각각 62.3, 62.3, 59%로 유사하였으나 최종 트레할로스 생산수율에 이르는 시간이 최대 6시간 앞당겨 짐을 알 수 있었다. 효소반응 크기를 2-L로 증가 시켜 반응하였을 때 그 양상을 조사한 결과 소규모 반응(10 ml 미만)의 경우와 큰 차이가 없이 트레할로스생성량은 60%내외였다. 따라서 이 결과들을 통하여 본 효소를 이용한 트레할로스 생산은 비교적 산업적으로 적용이 용이 할 것으로 사료된다.

Keywords

References

  1. Adv. Carbohydr. Chem. Biochem. v.30 The metabolism of α,α-trehalose Elbein, A. D.
  2. Adv. Carbohydr. Chem. Biochem. v.52 Nomenclature of carbohydrates Maraught, A. D.
  3. TIBTECH v.16 Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose Singer, M. A.;S. Lindquist
  4. Adv. Carbohydr. Chem. Biochem. v.18 Trehaloses Brich, G. G.
  5. Biotechnol. Ann. Rev. v.2 Biotechnological applications of the disaccharide trehalose Paiva, C. L. A.;A. D. Panek
  6. Cryobiology v.25 Modes of stabilization of a protein by organic solutes during desiccation Carpenter, J. F.;J. H. Crowe
  7. Cryobiology v.22 Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline Rudolph, A. S.;J. H. Crowe
  8. Bio/Technology v.10 Extraordinary stability of enzymes dried in trehalose: simplified molecular biology Colaco, C.;S. Sen;M. Thangavelu;S. Pinder;B. Roser
  9. Trends Food Sci. Technol. v.2 Trehalose, a new approach to premium dried foods Roser, B.
  10. J. Biotechnol. v.7 Trehalose as cryoprotectant for preservation of yeast strains Coutinho, C. C.;E. Bernardes;D. Felix;A. D. Panek
  11. Japan Kokai Tokkyo Koho (Japan patent) JP05292986 November, Process for production of trehalose Miyazaki, J.;K. Miyagawa;Y. Sugiyama
  12. Japan Kokai Tokkyo Koho ( Japan patent) JP05211882 August, Brevibacterium, Microbacterium, and Arthrobacterium Tsuchida, T.;Y. Murakami;Y. Nishimoto
  13. J. Appl. Glycosci. v.42 Formation of trehalose from starch by novel enzymes A. Tabuchi;T. Mandai;T. Shibuya;M. Kubota;S. Fukuda;T. Sugimoto;M. Kurimoto
  14. J. Appl. Glycosci v.43 Two novel pathways for the enzymatic synthesis of trehalsoe in bacteria H. Chaen;K. Mauta;T. Nakada;T. Nishimoto;T. Shibuya;M. Kubota;S. Fukuda;T. Sugimoto;m. Kurimoto;Y. Tsujisaka
  15. J. Appl. Glycosci. v.43 Production of trehalose by new trehalose-producing enzymes from Archae K. Kobayashi;M. Kettoku;Y. Miura;M. Kato;T. Komeda;A. Iwamatsu
  16. Biosci. Biotech. Biochem. v.59 Existence of a novel Enzyme converting maltose into trehalose T. Nishimoto;M. Nakano;S. Ikegami;H. Chaen;S. Fukuda;T. Sugimoto;M. Kurimoto;Y. Tsujisaka
  17. Biosci. Biotech. Biochem. v.59 Formation of trehalose from maltooligosachharides by a novel enzymatic system K. Maruta;T. Nakada;M. Kubota;H. Chaen;T. Sugimoto;m. Kurimoto;Y. Tsujisaka
  18. Enzyme Microb. Technol. v.22 Production of trehalose by a dual enzyme system of immobilized maltose phosphorylase and trehalose phosphorylase M. Yoshida;N. Nakamura;K. Horikoshi
  19. Biotechnol. Tech. v.13 Continuous production of α,α -trehalose by immobilized fungal trehalose phosphorylase Klimacek, M.;C. Eis;B. Nidetzky
  20. Division of Biochemical Engineering and Biotechnology v.13 Production of trehalose using Thermus enzyme H. J. Shin;S. H. Koh;D. S. Lee
  21. Biotechnol. Lett. v.20 Trehalose synthesis from maltose by a thermostable trehalose synthase from Thermus caldophilus H. J. Shin;S. H. Koh;D. S. Lee;S. Y. Lee
  22. Biosci. Biotech. Biochem. v.60 Purification and characterization of a thermostable trehalose synthase from Thermus aquaticus T. Nishimoto;T. Nakano;H. Chaen;S. Fukuda;T. Sugimoto;M. Kurimoto;Y. Tsujisaka
  23. Biosci. Biotech. Biochem. v.60 Purification and properties of a novel enzyme, trehalose synthase, from Pimelobacter sp. R48 T. Nishimoto;M. Nakano;T. Nakada;H. Chaen;S. Fukuda;T. Sugimoto;M. Kurimoto;Y. Tsujisaka
  24. Bioscience and Bioindustry v.53 Production of trehalose by enzymatic conversion from starch T. Sugimoto
  25. Appl. Microbiol. Biotechnol. v.51 Extremophiles as a source of novel enzymes for industrial application F. Nihaus;C. Bertoldo;M. Kahler;G. Antranikiam
  26. Ph.D. Thesis, Dept. Agric. Chem., Korea University Studies on Trehalose Synthase from Thermus caldophilus GK24 Koh, S.
  27. Appl. Environ. Microbiol. v.64 Purification and characterization of a trehalose synthase from the Basidiomycete Grifola frondosa K. Saito;T. Kase;E. Takahashi;E. Takahashi;S. Horinouchi