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Abstract

Meshfree approximations exhibit significant potential to solve partial differential
equations. Meshfree methods have been successfully applied to various problems which

the traditional finite element methods

have difficulties to handle, including the

quasi-static and dynamic fracture. large deformation problems, contact problems, and
strain localization problems. Reproducing Kernel Particle Method(RKPM) is used in
this research due to its built-in feature of multi-resolution. the sound mathematical
foundation and good numerical performance. A formulation of RKPM is reviewed and
numerical examples are given to verify the accuracy of the proposed meshfree method

for largely deformed elasto-plastic material.

1. A =

Despite its success in  the analysis of
geometrically and materially nonlinear response, the
most widely used finite element methods(FEM) in
engineering and science are not suitable for
problems such as large deformation, high gradients,
strain  concentration, grain boundary migration,
crack propagation and problems associated with

frequently remeshing. These reasons are partially

due to the regularity requirement of meshes.
Futhermore, mesh generation is a very difficult and
lack of robust and efficient 3D mesh generators
makes the solution of 3D problems a time-
consuming task. To avoid these drawbacks of
FEM, so called meshfree{(or meshless) methods
have been developed during the past 10 years and
in recent years, there has been a growing interest
in meshfree methods.

A number of meshfree methods have been
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developed to deal with these problems successfully
by constructing the approximation functions
entirely in terms of particles. The essential feature
of these meshfree methods is that the discrete
model is

Other noticeable characteristics of the methods are

completely described by  particles.

the smooth approximation, ease of adaptability,
robustness to large deformations, and robustness to
rregularity of particle distributions. Among the
meshfree methods, reproducing kernel particle
methods(RKPM)[6-14] appears prominent for its
sound mathematical foundation and high accuracy.
RKPM has heen applied with success in various
fields such as fluid dynamics[6], large deformation
hyper-elastic, and elasto- plastic problems.[9,11-16]

As like many other meshfree methods, RKPM
performs domain integration based on Gauss
integration for desired accuracy. This integration
method requires domain partitioning that is made
independently to the nodal discretization. At each
Gauss quadrature point, all the nodes with their
kernel supports covering that particular Gauss
quadrature point are searched, and the stiffness
matrix and force vector of this group of influenced
nodes need to be computed and assembled.
Therefore, the support size of the kerel function
and shape function play a significant role in the
accuracy and efficiency of RKPM. The supports of
the meshfree shape functions usually cover more
surrounding points than those in the finite element
methods. This requirement increases the number of
numerical operations in the stiffness matrix and
force vector formations, and the resulting global
stiffness matrix has large bandwidth.

The situation is more significant when dealing
with incompressible problems, in which sufficiently
large support sizes need to be used in the
meshitree shape functions to avoid incompressible
locking [4,5,9,11-141.

In a meshfree formulation, high-order weight
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and kemel functions such as the exponential
function, Gaussian function, and the cubic B-spline
function are usually used. Therefore, a higher-
order Gauss integration is required. An integration
order of (/n + 2x(v/n + 2), with n being the
number of points within the integration zone, has
been used by DBelytschko et all56] in two-
dimensional problems that use an exponential-type
weight function. For a two~dimensional integration
zone that contains four points, for example, the
meshfree methods require 4x4 quadrature points,
whereas only 2x2 quadrature points are needed in
4-node finite elements.

In this paper, we employ RK approximation to
formulate  the
equations, and frictional contact conditions. The

discrete  nonlinear  equilibrium
basic theory of RKPM is reviewed in section 2 and
we present the application of RKPM to the metal
largely  deformed

forming problems for

elasto-plastic material.

2. Meshfree Methods

Several different meshfree methods have been
developed, including smooth particle hydrodynamics
(SPH), element free Galerkin methods(EFG), and
reproducing kernel particle methods(RKPM). The
earliest development of meshfree methods was the
SPH by Lucyl1], and Monaghan[2] for astrophysics
problems involving fluid masses arbitrarily moving
in an infinite domain. One fundamental feature of
SPH is the kernel estimate of the function, where
the kernel function can be chosen so that it mimics
the Dirac delta function. The method was later
extended to treat finite domain problems, however,
although the method works well in the absence of
boundaries[2] and with a large number of particles,
large errors were generated near the boundaries
due to the tensile instability and the lack of
identified by

zero-th order inconsistency as
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subsequent researches(4,53].

Each of the governing partial differential
equations is multiplied by a kernel function and
integrated over the solution domain to produce the
equations for the kernel estimates. The kernel
estimate then provides the approximation to
estimate field variables at discrete points. The
functions are evaluated only at discrete particles
without reference to a finite element mesh.

EFG also enforces the essential boundary
conditions by the Lagrange multiplier method. The
numerical studies reported in [4,5] suggest that
EFG does not exhibit volumetric locking when
large supports were used, and the rate of
convergence for the method is significantly higher
than that of finite elements.

The studies also demonstrated that EFG is very
effective in fracture problems that are difficult to
handle using finite elements. The efficiency of EFG
was later improved with a modified variational
principle to enforce essential boundary conditions.

RKPM were proposed by Liu et all6 10] to
improve the accuracy of the SPH method for finite
domain problems.

In this method, the kernel function was modified
by introducing a correction function to meet the
consistency condition. The resulting reproducing
equation with modified kernel function exactly
reproduces polynomials to a specific order. It was
proven later that the shape functions in RKPM
become moving least-squares kernel interpolants if
polynomial basis functions are used.

This method provides a general formulation for
the construction of shape functions for meshfree
computation. The convergence property of RKPM
is discussed(8].

Liu et al[7] introduced wavelets as the kernel
applied RKPM to
multiscale analysis. Chen et all9] introduced a
material kernel function for large deformation

functions and successfully
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analysis so that the kemel stability can be ensured
throughout the process of structural deformation.
This development also leads to a simplified
transformation method on which the transformation
matrix and its inversion can be formed at a
Chen et all12-16] later
proposed a transformation method with which a

preprocessing — stage.
modified shape function that possess Kronecker
delta properties can be developed to impose
essential boundary condition.

2.1 Reproducing Kernel Particle Method

2.1.1 Construction of One-Dimensional RKPM
Basic Function
Consider the following kernel estimate of a

function #(x):

u*(x) = fio O, (x—9s)uls)ds 2.1

where 2" (x) is the kernel estimate of wu(x),

and @ ,(x—s) is the kernel function with the

support measure of ‘a’. In general, a is
defined so that it determines the domain of
influence @ ,(x) to the neighborhood of s=zx.

If the kemel function is a Dirac delta function,

the u”(x) exactly generates u(x). In practice,
domain is finite in structural
problems, and the Dirac delta function is difficult
to deal with numerically. Therefore, for a bounded

domain, Eq.(2.1) is rewritten by

however, the

u*(x) :fg O, (x—su(s)ds (2.2)

where @ ,{(x—s) is a positive function with the
following properties:

fg @, (x—)ds = 1 2.3)
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u (x) = ulx) as a—0 (24)

In fact, a zero-th consistency condition(Eq.(2.3))
can be easily satisfied by the normalization of the
kemel function. However, when the domain of
interest is finite, Eq.(2.3) does not assure the
consistency condition in the discrete form. To
study this problem, Liu et al[6] investigated the
reproductivity of kernel estimate using a Taylor
series expansion of the function #{(s) around x.
Consider here a one-dimensional kernel estimate

for simplicity, and let

o] . n
u(s) = ZOJ_LSWX u™ (x) (25)
= !
W
h G — d"u )
where u Ty

Substituting Eq.(25) into Eq.(2.2) leads to

u (x) = my(u(x)

+ 2 J%‘D— m o, (2) u"{(x) (26)

n=1

where  m ,{(x) is the moment defined by

m,(x) = fg (x—9)" @ (x—9)ds @7

To preserve the N-th order consistency condition

in 2" (x), the kernel function has to satisfy the
so-called reproducing conditions[6]:

mo(x) =1 m,(x) =0 for 1<k<N (28)

However, the higher-order consistency conditions
are difficult to meet, and most of the kernel
functions do not satisfv these reproducing
conditions.

Liu et all6] introduces a correction function to

the kernel estimate:

uR(x)ng Clx;x—s) @ ,(x—s)u(s)ds
' 29)

where uR(x) is the "reproduced” function of
u(x), C(x; x—s) is called the correction function
that is to be constructed to fulfill reproducing
conditions, and Eq.(2.9) is the reproducing kernel
approximation, or the reproducing equation.

The correct function is expressed by an N th
order polynomial of (x—3s), ie.

Clx;x—s) = ﬁ:o bi()(x—s)’ (2.10)

= p T ()H(x—>5)

where H(x—s) is the vector of polynomial

basis functions,

H (x—s)=
[ Lx—s, (x—97%, ..., (x—9"1 @I1D
b7 (x) =

[ 6g(x), 6,(x), b,(0),... by(x) ]

and &;(x)’s are determined by satisfying the

reproducing conditions, i.e.,

fgC(x; x—58) @, (x—)H(x— s)ds
= H(0) (2.12)

Substituting Eq.(2.10) into Eq.(2.12) leads to

[j'QH(x~s) O, (x—s) HT (x—s)ds}b(x)

= H(() (2.13)
and the unknown vector b(x) is solved by
b(x) = M(x) ' H(0) (2.14)
M(x)=
fQH(x— ) H (x—s) @ ,(x—s)ds
(2.15)
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Introducing Eqs.(210) and (2.14) into Eq{2.9)

results in the following reproducing kernel

approximation:
u R(x) —
fg Clx;x—s) @ ,(x—s)ul(s)ds

= HT0) M '(»
x fQH(x—s) O, (x—suls)ds

(2.16)

Eq.(2.16) can be rewritten in the following form,

uf(x) = fg O, (x;x—s)u(s)ds (2.17)
where
O, (x;x—s) =Clx;x—s) D,(x—5) is

called the reproduced kernel. Since Eq.(2.17)

exactly reproduces N-th order polynomials, the

method  fulfills  the N-th order consistency
conditions, i.e.,
fg O, (x;x—9)s jds= x|
for n=10,...,N (2.18)

2.1.2 Discretization of Reproducing Kernel
Approximation
The discretized reproducing equation is obtained
by performing numerical integration in Eq.(Z17).
Suppose that the domain &2, is discretized by a

set of nodes { x1,..., X np), Where x;is the

location of node I, and NP is the total number of
points(nodes). By the use of a simple trapezoidal
rule, Eq.(2.17) is discretized into

w ()= g} ¥ (x) d; (2.19)
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where ¥ Hx)= @, (x;x— x7)0 x;
(2.20)

The function ¥ 7(x) is interpreted as the
particle or meshfree shape function of node I, and

d is the associated coefficient of approximation,
Note this shape function does not meet the

Kronecker delta properties, ie, ¥ {(x)+ &y,

which means generally #"(x)# d; and d; is
not the nodal value of the function computed at the
particle I This leads to some complication in
imposing the essential boundary conditions in the
meshfree method. Additional development such as
method[4] or the
transformation method[9] is required to impose the

the Lagrange multiplier
essential boundary conditions. A singular kernel
method was also proposed for direct imposition of
essential boundary conditions, but the solution
accuracy of linear basis functions was poor.

The  discrete

reproducing  conditions  are

preserved if the numerical integration of M and
M ' is consistent with the discretization of the
reproducing equation. Since the discretization of the
continuous reproducing equation is to obtain the
shape functions, the weight of the discretization
A x; in Eq.(2.20) is set to unity for simplicity. It

can be shown that the Reproducing Kernel shape

function meets the following  consistency
conditions:
gl rixx7 =x";n=0N (2.21)

Widely used kernel functions include exponential
function[4], Gaussian function, and cubic B-spline
function, among others. In this study, the cubic

B-spline function is used as the kernel function:
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for 0<|z]<4

0,(2) 4/3—4la+4 |212—4/3 |2°
for 3<|z<]
0
otherwise
where 2z = AT X
174

3. Meshfree Formulation in Elasto—plastic
Material with Contact Conditions

Contact conditions are included to handle contact
between and workpiece. The classical
Coulomb law is used to model frictional contact
and the penalty method is applied to assure

tools

impenetration. The contact traction’s ¢, and f in
the normal and tangential directions, respectively,
are defined as follows:

L= ~Qngn (231)

“ag if latgt‘ < Luftn l
(stick conditions)

L= (2.32)

~Nitn sgnlgy) otherwise

(slip conditions)

where I is the coefficient of friction, @, and a;
are the normal and tangential penalty numbers,
and gn and g are normal and tangential gaps
between contact surfaces. The variational equation

of the problem can be written as:
fgﬁ uij Tid92
~ [ suibde— [ su;har
2, r!

+f Ctusg, + 1,6g)dr=0  p)

The contact term is integrated by collocation
formulation to vield

fr/( t, 08, + t:8gpdl

:g( F}zé\g}; + Ffagf)A (234)

. . b
where @2, is the domain, I' . is the current

non-contact traction boundary, I ¢ is the contact

boundary, z,; is the Cauchy stress, &, is the

body force, % ; is the non-contact surface traction,
F, and F, are the nodal normal and tangential

contact forces and A is summed over the contact
nodes on the deformable body.

The reproducing kemel
described in Eq.(220) and (2.29) are used in a
Galerkin approximation of the variational equation,
Eq.(2.33). The coordinate transformation method[9]
is used in the discrete RKPM equation so that the

shape functions as

contact force F, and F, are nodal quantities.
The linearization of Eq.(2.33) leads to a tangential
stiffness, and the explicit expression of contact
stiffness and contact force in RKPM framework
can be found in [12].

The radial return mapping algorithm is used to
compute the stress and internal variables and the
consistent tangent operator, which preserves the
quadratic convergence rate of the Newton method,
is used. The matrix equations and numerical
procedures are given in detail in[9].

4. Numerical Examples

4.1 Sheet Metal Forming by a Cylindrical
Punch

The numerical results from the RKPM are
analytical
stretched by a

compared with the solutions. A

plane-strain  sheet metal is
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cylindrical punch as shown in Fig.l. This problem
is recommended as a benchmark test of sheet
metal forming processes. In this problem, the sheet
considered to be

quasi-static, and punch and die are assumed to be

metal forming process s

perfectly rigid. The dimension of the problem are
Ry=00.8mm, Ce=59.18mm, Re=61.30mm, Rs=6.35mm,
and h=1.0mm. The constitutive law of sheet metal
is described
constants © Young's modulus E=69GPa, Poisson's
ratio v=0.3, isotropic hardening 0.(€")= 589(10 ' + €
P18 MPa, and coefficient of friction 1=0. Due to
symmetry, only half of the sheet metal is modeled

using a J» plasticity with material

with 4x51 particles and 3x50 integration zones, and
Gauss integration order of 4x4 is used. Relatively
dense particles are distributed around the die
comers in order to capture stress concentrations in
those areas. In this analysis, the end of the sheet
metal is fixed, and the ngid punch is moved
downward with a vertical displacement of 30mm in
50 incremental steps. Reproducing kemel contact
constraints

formulation and kinematic

treatments[15)  are employed for the contact

analysis.

Ry= 50.8mm
h= 1.0mm

Ry= 6.35mm
Cq= 59.18mm
Ro= 61.30mm

Die\ Ao r

Fig. 1 Geometry of plain-strain cylindrical punch
problem.
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The RKPM prediction is compared with the
in Fig.3. The
results show that RKPM solution agrees well with

membrane analytical  solution[3]
the membrane solution. Note that the membrane
solution does not take necking deformation into
consideration. The progressive deformation of the
sheet metal is shown in Fig2, and local necking
are observed near the die contact areas. In this
analysis, the tolerance for the residual force norm
is 10°

4.2 Springback of a Sheet Metal in Flanging

A straight flanging operation and its springback
behavior of a sheet metal is simulated, and the
predicted  springback angle
experimental data reported in Song et all17]. The
blank is 150mm in length, 150mm in width and
Imm in thickness. The design parameters of a

is  compared with

flanging operation are shown in Figd4, where the
flange length L=20mm, die radius R=3mm, and

vunch depth 7.5amm

punct depth 155

~. el depth 2805mm

A a"f

N pwch dopth Kiben 47
N s

Fig. 2 Progressive deformation of a cylindrical

punch.
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three different gaps, G=12, 16, and 20mm are
considered in this analysis. The material properties
are Young's modulus E=70GPa, Poisson’s ratio v
=0.3, isotropic hardening 0,(e") = 146 + 500" MPa.

05
Analytical Membrane Solution
E
£
z
=
o
e
o
w
=y
o
c
=
a
1
] 10 20 30
Punch Depth (mm)
(a) Direct nodal integration
0.5
Analytical Membrane Solution
----- R=1.2 4
E O =20 b
Xl
> e R=3.0 W
= 03 3
@
Q
&
c 02
o
c
2
01 |
0.0 L L
o} 10 20 30

Punch Depth (mm)

(b) SC nodal integration
Fig. 3 Comparison of the cylindrical punch
force-displacement response.

Punch
Holder

1 L
I‘

»l
g

R

__» .
G Die
I.= 20mm(flange length)

R= 3.0mm
G= Gap

Fig. 4 Geometry parameters of flanging problem
and description.
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The predicted angles of springback for three gap
dimensions G=1.2, 16, and 2.0 are compared with
in Figdo In
meshfree discretization, 3x101, 4x116, and 5x131
nodes with three shape function support sizes
r=1.2, 20, and 30 are used and compared. The

meshfree results

experimental data[17] as shown

show good agreement with
experimental data, where the springback angle
increases as the gap dimension increases. The
results  also
discretization with larger shape function support
a  better with the
experimental data. Typical flanging progressive

demonstrate that the meshfree

size provides agreement
deformations using 5x131 nodes and shape function
normalized support size of 2.0 are shown in Fig6.
The comparison of deformation and springback
under different gap dimensions are displayed in
Fig.7.

R

Springback !’
—_

|

Fig. 6 Deformation and springback of the
flanging operation simulated by meshfree method.
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(a)gap=12mm (b)gap=1.6mm (¢c)gap=2.0mm

Fig. 7 Effect of gap dimension on springback.
5. Conclusions

A meshfree formulation for loading
history—dependent material behavior and frictional
contact conditions is developed based on the
Reproducing Kernel Producing Method(RKPM) for
the metal forming simulation. The emphasis is on
the meshfree treatment of large plastic deformation
and complicated contact conditions. The numerical
examples show that no mesh distortion difficulties
in the finite clement analysis are encountered by
usage of a smooth kernel function with flexibly
adjustable support size.

Due to the use of the Lagrangian reproducing
kernel shape functions, the support size of the
kernel functions does not require readjustment
during the contact computation and the large
plastic deformation induced in the metal forming
process can be dealt with easily by the proposed
method.
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