Abstract
The role of excess Pb about the crystallization behavior and electrical properties in b(Zr$\sub$0.52/Ti$\sub$0.48/)O3(PZT) thin films has not been precisely defined. In this work, the effect of excess Pb content on the ferroelectric properties of these films was investigated. To analyze the effect, PZT films containing various amounts of excess Pb were Prepared. PZT thin films were deposited on the Pt/Ti bottom electrode by rf magnetron sputtering method and then they were crystallized by rapid thermal annealing (RTA). The experiment showed that all PZT films indicated perovskite polycrystalline structure with preferred orientation (111) and no pyrochlore phase was observed. As higher excess Pb was included, the films showed that value of leakage current shift from 2.03${\times}$10$\^$-6/ to 6.63 ${\times}$ 10$\^$-8/A/cm$^2$ at 100kV/cm, and value of remanent polarization shift from 8.587 ${\mu}$C /cm$^2$ to 4.256 ${\mu}$C/ cm$^2$. Electrical properties of PZT thin film affected by Pb excess content of target were explained to be caused of defect among space charges and defect grain boundaries.