DOI QR코드

DOI QR Code

왜도 타원형 분포를 이용한 준모수적 계층적 선택 모형

Semiparametric Bayesian Hierarchical Selection Models with Skewed Elliptical Distribution

  • 정윤식 (부산대학교 자연과학대학 통계학과) ;
  • 장정훈 (부산대학교 자연과학대학 통계학과)
  • 발행 : 2003.03.01

초록

본 논문에서는 Chen, Dey와 Shao(1999), Branco와 Dey(2001)가 제안한 왜도가 있는 두터운 꼬리를 가지는 오차 분포와 디리슈레 과정 사전분포를 이용한 베이지안 메타분석 (meta-analysis)을 하고자 한다. 베이지안 메타분석을 위하여 가중함수를 고려한 계층적 선택 모형을 이용한다. 이때의 오차항은 왜도가 있는 비정규 분포로 가정한다. 이를 위하여 우선 왜도 타원형 분포의 일반적인 족을 소개한다 이 분포족중 왜도 정규분포와 왜도 t 분포를 오차항 분포로 이용한 베이지안 계층적 선택 모형을 고려하며, 이 때 발생하는 복잡한 베이지안 계산은 MCMC 방법으로 해결한다. 마지막으로, 실제 자료(Johnson, 1993)인 두 가지의 충치예방약의 효과에 대한 차이를 비교하기 위해 얻어진 12개의 연구 자료를 이용하여 본 연구에서 제시된 베이지안 방법을 이용하여 메타분석을 한다.

Lately there has been much theoretical and applied interest in linear models with non-normal heavy tailed error distributions. Starting Zellner(1976)'s study, many authors have explored the consequences of non-normality and heavy-tailed error distributions. We consider hierarchical models including selection models under a skewed heavy-tailed e..o. distribution proposed originally by Chen, Dey and Shao(1999) and Branco and Dey(2001) with Dirichlet process prior(Ferguson, 1973) in order to use a meta-analysis. A general calss of skewed elliptical distribution is reviewed and developed. Also, we consider the detail computational scheme under skew normal and skew t distribution using MCMC method. Finally, we introduce one example from Johnson(1993)'s real data and apply our proposed methodology.

키워드

참고문헌

  1. Biometrika v.83 The Multivariate Skew-Normal Distribution Azzalini, A.;Dalla-Valle, A. https://doi.org/10.1093/biomet/83.4.715
  2. Journal of Multivariate Analysis v.79 A General Class of Multivariate Skew-elliptical Distributions Branco, M. D.;Dey, D. K. https://doi.org/10.1006/jmva.2000.1960
  3. Journal of the American Statistical Association v.94 A new skewed link model for dichotomous quantal response data Chen, M-H.;Dey, D. K.;Shao Q-M. https://doi.org/10.2307/2669933
  4. Journal of Statistical Computation and Simulation Semiparametric hierarchical selection model for Bayesian meta analysis Chung, Y.;Dey, D. K.;Jang, J.
  5. The Korean Journal of Applied Statistics v.14 A Bayesian Method to Semiparametric Hierarchical Selection Models Chung, Y.;Jang, J.
  6. Controlled Clinical Trials v.7 Meta-Analysis in Clinical Trials DerSimonian, R.;Laird, N. https://doi.org/10.1016/0197-2456(86)90046-2
  7. The Annals of Statistics v.1 A Bayesian Analysis of Some Nonparametric Problems Ferguson, T. S. https://doi.org/10.1214/aos/1176342360
  8. Bayesian Statistics 4 Evaluating the Accuracy of Sampling-Based Approaches to Calculating Posterior Moments Geweke J.;J. M. Bernado(ed.);J. O. Berger(ed.);A. P. Dawid(ed.);A. F. M. Smith(ed.)
  9. Journal of the European Organization for Caries Research (ORCA) v.27 Comparative Efficacy of Naf and SMFP Dentifrices in Caries Prevention : A Meta-Analysis Overview Johnson, M. F.
  10. Test v.5 Weighted Distributions Viewed in the Context of Model Selection : a Bayesian Perspective Larose, D.;Dey, D. K. https://doi.org/10.1007/BF02562690
  11. Bayesian Statistics 4 Hierarchical Models for Combining Information and for Meta-Analysis Morris, C. N.;Normand, S. L.;J. M. Bernado(ed.);J. O. Berger(ed.);A. P. Dawid(ed.);A. F. M. Smith(ed.)
  12. Technical Report 0030 A New Class of Multivariate Skew Distribution with Applications to Bayesian Regression Model Sahu, S. K.;Dey, D. K.;Branco, M. D.
  13. Journal of the American Statistical Association v.92 Hierarchical Selection Models with Applications in Meta-Analysis Silliman, N. P. https://doi.org/10.2307/2965556
  14. Aspects of Uncertainty: A Tribute to Hierarchical Priors and Mixture Models, with Applications in Regression and Density Estimation West, M.;Muller, P.;Escobar, M. D.;D. V. Lindley(ed.);A. F. M. Smith(ed.);P. R. Freeman(ed.)
  15. Journal of the American Statistical Association v.71 Bayesian and non-bayesian analysis of regression model with multivariate Student-t term Zeller, A. https://doi.org/10.2307/2285322

피인용 문헌

  1. Bayesian meta-analysis using skewed elliptical distributions vol.79, pp.5, 2009, https://doi.org/10.1080/00949650801891595